References
1.
Hare JA, Morrison WE, Nelson MW, Stachura MM, Teeters EJ, Griffis RB, et al. A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf. PLOS ONE. 2016;11: e0146756. doi:10.1371/journal.pone.0146756
2.
Perretti C, Fogarty M, Friedland K, Hare J, Lucey S, McBride R, et al. Regime shifts in fish recruitment on the Northeast US Continental Shelf. Marine Ecology Progress Series. 2017;574: 1–11. doi:10.3354/meps12183
3.
Friedland KD, Boucher JM, Jones AW, Methratta ET, Morse RE, Foley C, et al. The spatial correlation between trawl surveys and planned wind energy infrastructure on the US Northeast Continental Shelf. ICES Journal of Marine Science. 2023; fsad167. doi:10.1093/icesjms/fsad167
4.
Northeast Fisheries Science Center (U.S.). Fall Management Track Assessments 2020. 2022; doi:10.25923/8N72-Q136
5.
Le Cren ED. The Length-Weight Relationship and Seasonal Cycle in Gonad Weight and Condition in the Perch (Perca fluviatilis). Journal of Animal Ecology. 1951;20: 201–219. doi:10.2307/1540
6.
Wigley S, McBride N, McHugh N. Length-weight relationships for 74 fish species collected during NEFSC research vessel bottom trawl surveys, 1992-99. 2003; Available: https://repository.library.noaa.gov/view/noaa/3346
7.
Crear DP, Curtis TH, Hutt CP, Lee Y-W. Climate-influenced shifts in a highly migratory species recreational fishery. Fisheries Oceanography. 2023;32: 327–340. doi:10.1111/fog.12632
8.
Friedland KD, McManus MC, Morse RE, Link JS. Event scale and persistent drivers of fish and macroinvertebrate distributions on the Northeast US Shelf. ICES Journal of Marine Science. 2019;76: 1316–1334. doi:10.1093/icesjms/fsy167
9.
Steimle F, Terranova R. Energy Equivalents of Marine Organisms from the Continental Shelf of the Temperate Northwest Atlantic. Journal of Northwest Atlantic Fishery Science. 1985;6. doi:10.2960/J.v6.a11
10.
Lawson JW, Magalhães AM, Miller EH. Important prey species of marine vertebrate predators in the northwest Atlantic: Proximate composition and energy density. Marine Ecology Progress Series. 1998;164: 13–20. Available: https://www.jstor.org/stable/24825521
11.
Brown-Peterson NJ, Wyanski DM, Saborido-Rey F, Macewicz BJ, Lowerre-Barbieri SK. A Standardized Terminology for Describing Reproductive Development in Fishes. Marine and Coastal Fisheries. 2011;3: 52–70. doi:10.1080/19425120.2011.555724
12.
Lambert Y, Dutil J-D. Energetic consequences of reproduction in Atlantic cod (Gadus morhua) in relation to spawning level of somatic energy reserves. Canadian Journal of Fisheries and Aquatic Sciences. 2000;57: 815–825. doi:10.1139/f00-022
13.
Wuenschel MJ, Deroba JJ. The Reproductive Biology of Female Atlantic Herring in U.S. Waters: Validating Classification Schemes for Assessing the Importance of Spring and Skipped Spawning. Marine and Coastal Fisheries. 2019;11: 487–505. doi:10.1002/mcf2.10099
14.
McBride RS, Somarakis S, Fitzhugh GR, Albert A, Yaragina NA, Wuenschel MJ, et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish and Fisheries. 2015;16: 23–57. doi:10.1111/faf.12043
15.
Trippel E, Neil S. Maternal and seasonal differences in egg sizes and spawning activity of northwest Atlantic haddock (Melanogrammus aeglefinus) in relation to body size and condition. Canadian Journal of Fisheries and Aquatic Sciences. 2011;61: 2097–2110. doi:10.1139/f04-125
16.
Wuenschel MJ, McElroy WD, Oliveira K, McBride RS. Measuring fish condition: An evaluation of new and old metrics for three species with contrasting life histories. Canadian Journal of Fisheries and Aquatic Sciences. 2019;76: 886–903. doi:10.1139/cjfas-2018-0076
17.
Manning AJ, Crim LW. Maternal and interannual comparison of the ovulatory periodicity, egg production and egg quality of the batch-spawning yellowtail flounder. Journal of Fish Biology. 1998;53: 954–972. doi:10.1111/j.1095-8649.1998.tb00456.x
18.
Friedland KD, Langan JA, Large SI, Selden RL, Link JS, Watson RA, et al. Changes in higher trophic level productivity, diversity and niche space in a rapidly warming continental shelf ecosystem. Science of The Total Environment. 2020;704: 135270. doi:10.1016/j.scitotenv.2019.135270
19.
Chavez-Rosales S, Josephson E, Palka D, Garrison L. Detection of Habitat Shifts of Cetacean Species: A Comparison Between 2010 and 2017 Habitat Suitability Conditions in the Northwest Atlantic Ocean. Frontiers in Marine Science. 2022;9. Available: https://www.frontiersin.org/articles/10.3389/fmars.2022.877580
20.
Lettrich MD, Asaro MJ, Borggaard DL, Dick DM, Griffis RB, Litz JA, et al. Vulnerability to climate change of United States marine mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean. PLOS ONE. 2023;18: e0290643. doi:10.1371/journal.pone.0290643
21.
Pace RM, Williams R, Kraus SD, Knowlton AR, Pettis HM. Cryptic mortality of North Atlantic right whales. Conservation Science and Practice. 2021;n/a: e346. doi:https://doi.org/10.1111/csp2.346
22.
Hayes S, Gardner S, Garrison LP, Henry A, Leandro L. North Atlantic Right Whales-Evaluating Their Recovery Challenges in 2018. NOAA Tech Memo NMFS NEFSC 247. 2018.
23.
Record N, Runge J, Pendleton D, Balch W, Davies K, Pershing A, et al. Rapid Climate-Driven Circulation Changes Threaten Conservation of Endangered North Atlantic Right Whales. Oceanography. 2019;32. doi:10.5670/oceanog.2019.201
24.
Sorochan KA, Plourde S, Morse R, Pepin P, Runge J, Thompson C, et al. North Atlantic right whale (Eubalaena glacialis) and its food: (II) interannual variations in biomass of Calanus spp. On western North Atlantic shelves. Journal of Plankton Research. 2019;41: 687–708. doi:10.1093/plankt/fbz044
25.
Quintana-Rizzo E, Leiter S, Cole TVN, Hagbloom MN, Knowlton AR, Nagelkirk P, et al. Residency, demographics, and movement patterns of North Atlantic right whales Eubalaena glacialis in an offshore wind energy development area in southern New England, USA. Endangered Species Research. 2021;45: 251–268. doi:10.3354/esr01137
26.
Schick RS, Halpin PN, Read AJ, Slay CK, Kraus SD, Mate BR, et al. Striking the right balance in right whale conservation. Canadian Journal of Fisheries and Aquatic Sciences. 2009;66: 1399–1403. doi:10.1139/F09-115
27.
Christiansen N, Daewel U, Djath B, Schrum C. Emergence of Large-Scale Hydrodynamic Structures Due to Atmospheric Offshore Wind Farm Wakes. Frontiers in Marine Science. 2022;9. Available: https://www.frontiersin.org/article/10.3389/fmars.2022.818501
28.
White TP, Veit RR. Spatial ecology of long-tailed ducks and white-winged scoters wintering on Nantucket Shoals. Ecosphere. 2020;11: e03002. doi:10.1002/ecs2.3002
29.
Andrews JC, Mott PR. Gray Seals at Nantucket, Massachusetts. Journal of Mammalogy. 1967;48: 657–658. doi:10.2307/1377597
30.
Lelli B, Harris DE, Aboueissa A-M. Seal Bounties in Maine and Massachusetts, 1888 to 1962. Northeastern Naturalist. 2009;16: 239–254. Available: https://www.jstor.org/stable/27744561
31.
Wood SA, Josephson E, Precoda K, Murray KT. Gray seal (Halichoerus grypus) pupping trends and 2021 population estimate in U.S. Waters. Northeast Fisheries Science Center Reference Document 22-14. 2022.
32.
Wood SA, Murray KT, Josephson E, Gilbert J. Rates of increase in gray seal (Halichoerus grypus atlantica) pupping at recolonized sites in the United States, 1988–2019. Swanson B, editor. Journal of Mammalogy. 2020;101: 121–128. doi:10.1093/jmammal/gyz184
33.
Garrison L, Link J. Dietary guild structure of the fish community in the Northeast United States continental shelf ecosystem. Marine Ecology Progress Series. 2000;202: 231–240. doi:10.3354/meps202231
34.
Smith BE, Link JS. The Trophic Dynamics of 50 Finfish and 2 Squid Species on the Northeast US Continental Shelf. NOAA Technichal Memorandum NMFS-NE-216 [Internet]. National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026; 2010. Available: http://www.nefsc.noaa.gov/publications/tm/tm216/
35.
Pontavice H du, Miller TJ, Stock BC, Chen Z, Saba VS. Ocean model-based covariates improve a marine fish stock assessment when observations are limited. Hidalgo M, editor. ICES Journal of Marine Science. 2022;79: 1259–1273. doi:10.1093/icesjms/fsac050
36.
Griffin LP, Griffin CR, Finn JT, Prescott RL, Faherty M, Still BM, et al. Warming seas increase cold-stunning events for Kemp’s ridley sea turtles in the northwest Atlantic. PLOS ONE. 2019;14: e0211503. doi:10.1371/journal.pone.0211503
37.
Lentz SJ. Seasonal warming of the Middle Atlantic Bight Cold Pool. Journal of Geophysical Research: Oceans. 2017;122: 941–954. doi:10.1002/2016JC012201
38.
Chen Z, Curchitser E, Chant R, Kang D. Seasonal Variability of the Cold Pool Over the Mid-Atlantic Bight Continental Shelf. Journal of Geophysical Research: Oceans. 2018;123: 8203–8226. doi:10.1029/2018JC014148
39.
Miles T, Murphy S, Kohut J, Borsetti S, Munroe D. Offshore Wind Energy and the Mid-Atlantic Cold Pool: A Review of Potential Interactions. Marine Technology Society Journal. 2021;55: 72–87. doi:10.4031/MTSJ.55.4.8
40.
Miller TJ, Hare JA, Alade LA. A state-space approach to incorporating environmental effects on recruitment in an age-structured assessment model with an application to southern New England yellowtail flounder. Canadian Journal of Fisheries and Aquatic Sciences. 2016;73: 1261–1270. doi:10.1139/cjfas-2015-0339
41.
Friedland KD, Miles T, Goode AG, Powell EN, Brady DC. The Middle Atlantic Bight Cold Pool is warming and shrinking: Indices from in situ autumn seafloor temperatures. Fisheries Oceanography. 2022;31: 217–223. doi:10.1111/fog.12573
42.
Powell EN, Ewing AM, Kuykendall KM. Ocean quahogs (Arctica islandica) and Atlantic surfclams (Spisula solidissima) on the Mid-Atlantic Bight continental shelf and Georges Bank: The death assemblage as a recorder of climate change and the reorganization of the continental shelf benthos. Palaeogeography, Palaeoclimatology, Palaeoecology. 2020;537: 109205. doi:10.1016/j.palaeo.2019.05.027
43.
Pace SM, Powell EN, Mann R. Two-hundred year record of increasing growth rates for ocean quahogs (Arctica islandica) from the northwestern Atlantic Ocean. Journal of Experimental Marine Biology and Ecology. 2018;503: 8–22. doi:10.1016/j.jembe.2018.01.010
44.
Chen Z, Kwon Y-O, Chen K, Fratantoni P, Gawarkiewicz G, Joyce TM, et al. Seasonal Prediction of Bottom Temperature on the Northeast U.S. Continental Shelf. Journal of Geophysical Research: Oceans. 2021;126: e2021JC017187. doi:10.1029/2021JC017187
45.
Joyce TM, Kwon Y-O, Yu L. On the Relationship between Synoptic Wintertime Atmospheric Variability and Path Shifts in the Gulf Stream and the Kuroshio Extension. Journal of Climate. 2009;22: 3177–3192. doi:10.1175/2008JCLI2690.1
46.
Joyce TM, Kwon Y-O, Seo H, Ummenhofer CC. Meridional Gulf Stream Shifts Can Influence Wintertime Variability in the North Atlantic Storm Track and Greenland Blocking. Geophysical Research Letters. 2019;46: 1702–1708. doi:10.1029/2018GL081087
47.
Chi L, Wolfe CLP, Hameed S. The Distinction Between the Gulf Stream and Its North Wall. Geophysical Research Letters. 2019;46: 8943–8951. doi:10.1029/2019GL083775
48.
Nye JA, Joyce TM, Kwon Y-O, Link JS. Gulf Stream position determines spatial distribution of silver hake. Nature Communications. 2011;2. doi:10.1038/ncomms1420
49.
Zhang R, Vallis GK. The Role of Bottom Vortex Stretching on the Path of the North Atlantic Western Boundary Current and on the Northern Recirculation Gyre. Journal of Physical Oceanography. 2007;37: 2053–2080. doi:10.1175/JPO3102.1
50.
Goddard PB, Yin J, Griffies SM, Zhang S. An extreme event of sea-level rise along the Northeast coast of North America in 2009–2010. Nature Communications. 2015;6. doi:10.1038/ncomms7346
51.
Gonçalves Neto A, Langan JA, Palter JB. Changes in the Gulf Stream preceded rapid warming of the Northwest Atlantic Shelf. Communications Earth & Environment. 2021;2: 1–10. doi:10.1038/s43247-021-00143-5
52.
Mountain DG. Labrador slope water entering the Gulf of Maine—response to the North Atlantic Oscillation. Continental Shelf Research. 2012;47: 150–155. doi:10.1016/j.csr.2012.07.008
53.
Gangopadhyay A, Gawarkiewicz G, Silva ENS, Monim M, Clark J. An Observed Regime Shift in the Formation of Warm Core Rings from the Gulf Stream. Scientific Reports. 2019;9: 1–9. doi:10.1038/s41598-019-48661-9
54.
Gangopadhyay A, Gawarkiewicz G, Silva ENS, Silver AM, Monim M, Clark J. A Census of the Warm-Core Rings of the Gulf Stream: 1980–2017. Journal of Geophysical Research: Oceans. 2020;125: e2019JC016033. doi:10.1029/2019JC016033
55.
Chen K, Gawarkiewicz G, Yang J. Mesoscale and Submesoscale Shelf-Ocean Exchanges Initialize an Advective Marine Heatwave. Journal of Geophysical Research: Oceans. 2022;127: e2021JC017927. doi:https://doi.org/10.1029/2021JC017927
56.
Gawarkiewicz G, Todd R, Zhang W, Partida J, Gangopadhyay A, Monim M-U-H, et al. The Changing Nature of Shelf-Break Exchange Revealed by the OOI Pioneer Array. Oceanography. 2018;31: 60–70. doi:10.5670/oceanog.2018.110
57.
Gawarkiewicz G, Fratantoni P, Bahr F, Ellertson A. Increasing Frequency of Mid-depth Salinity Maximum Intrusions in the Middle Atlantic Bight. Journal of Geophysical Research: Oceans.
58.
Gawarkiewicz G, Chen K, Forsyth J, Bahr F, Mercer AM, Ellertson A, et al. Characteristics of an Advective Marine Heatwave in the Middle Atlantic Bight in Early 2017. Frontiers in Marine Science. 2019;6. Available: https://www.frontiersin.org/article/10.3389/fmars.2019.00712
59.
Potter IF, Galuardi B, Howell WH. Horizontal movement of ocean sunfish, Mola mola, in the northwest Atlantic. Marine Biology. 2011;158: 531–540. doi:10.1007/s00227-010-1578-2
60.
Worm B, Lotze HK, Myers RA. Predator diversity hotspots in the blue ocean. Proceedings of the National Academy of Sciences. 2003;100: 9884–9888. doi:10.1073/pnas.1333941100
61.
Jacox MG, Alexander MA, Bograd SJ, Scott JD. Thermal displacement by marine heatwaves. Nature. 2020;584: 82–86. doi:10.1038/s41586-020-2534-z
62.
Jacox MG, Alexander MA, Amaya D, Becker E, Bograd SJ, Brodie S, et al. Global seasonal forecasts of marine heatwaves. Nature. 2022;604: 486–490. doi:10.1038/s41586-022-04573-9
63.
Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver ECJ, et al. A hierarchical approach to defining marine heatwaves. Progress in Oceanography. 2016;141: 227–238. doi:10.1016/j.pocean.2015.12.014
64.
Staudinger MD, Mills KE, Stamieszkin K, Record NR, Hudak CA, Allyn A, et al. It’s about time: A synthesis of changing phenology in the Gulf of Maine ecosystem. Fisheries Oceanography. 2019;28: 532–566. doi:10.1111/fog.12429
65.
Pendleton DE, Tingley MW, Ganley LC, Friedland KD, Mayo C, Brown MW, et al. Decadal-scale phenology and seasonal climate drivers of migratory baleen whales in a rapidly warming marine ecosystem. Global Change Biology. 2022;28: 4989–5005. doi:10.1111/gcb.16225
66.
Cohen JM, Lajeunesse MJ, Rohr JR. A global synthesis of animal phenological responses to climate change. Nature Climate Change. 2018;8: 224–228. doi:10.1038/s41558-018-0067-3
67.
O’Keefe CE, DeCelles GR. Forming a Partnership to Avoid Bycatch. Fisheries. 2013;38: 434–444. doi:10.1080/03632415.2013.838122
68.
Thomas AC, Pershing AJ, Friedland KD, Nye JA, Mills KE, Alexander MA, et al. Seasonal trends and phenology shifts in sea surface temperature on the North American northeastern continental shelf. Deming JW, Drinkwater K, editors. Elementa: Science of the Anthropocene. 2017;5: 48. doi:10.1525/elementa.240
69.
Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of The Total Environment. 2020;733: 137782. doi:10.1016/j.scitotenv.2020.137782
70.
Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Global Change Biology. 2013;19: 1884–1896. doi:10.1111/gcb.12179
71.
Saba GK, Goldsmith KA, Cooley SR, Grosse D, Meseck SL, Miller AW, et al. Recommended priorities for research on ecological impacts of ocean and coastal acidification in the U.S. Mid-Atlantic. Estuarine, Coastal and Shelf Science. 2019;225: 106188. doi:10.1016/j.ecss.2019.04.022
72.
Goldsmith KA, Lau S, Poach ME, Sakowicz GP, Trice TM, Ono CR, et al. Scientific considerations for acidification monitoring in the U.S. Mid-Atlantic Region. Estuarine, Coastal and Shelf Science. 2019;225: 106189. doi:10.1016/j.ecss.2019.04.023
73.
Wright‐Fairbanks EK, Miles TN, Cai W-J, Chen B, Saba GK. Autonomous Observation of Seasonal Carbonate Chemistry Dynamics in the Mid-Atlantic Bight. Journal of Geophysical Research: Oceans. 2020;125: e2020JC016505. doi:https://doi.org/10.1029/2020JC016505
74.
Xu Y-Y, Cai W-J, Wanninkhof R, Salisbury J, Reimer J, Chen B. Long-Term Changes of Carbonate Chemistry Variables Along the North American East Coast. Journal of Geophysical Research: Oceans. 2020;125: e2019JC015982. doi:10.1029/2019JC015982
75.
Gaichas SK, DePiper GS, Seagraves RJ, Muffley BW, Sabo M, Colburn LL, et al. Implementing Ecosystem Approaches to Fishery Management: Risk Assessment in the US Mid-Atlantic. Frontiers in Marine Science. 2018;5. doi:10.3389/fmars.2018.00442
76.
Link JS, Watson RA. Global ecosystem overfishing: Clear delineation within real limits to production. Science Advances. 2019;5: eaav0474. doi:10.1126/sciadv.aav0474
77.
Cross RM, Färe R. Value data and the Bennet price and quantity indicators. Economics Letters. 2009;102: 19–21. doi:10.1016/j.econlet.2008.10.003
78.
Balk BM. An Assumption-Free Framework for Measuring Productivity Change. Review of Income and Wealth. 2010;56: S224–S256. doi:10.1111/j.1475-4991.2010.00388.x
79.
Lim SH, Lovell CAK. Profit and productivity of US Class I railroads. Managerial and Decision Economics. 2009;30: 423–442. doi:10.1002/mde.1462
80.
Grifell-Tatjé E, Lovell CAK. Decomposing the dividend. Journal of Comparative Economics. 2004;32: 500–518. doi:10.1016/j.jce.2004.05.002
81.
BOEM. Vineyard Wind 1 Offshore Wind Energy Project Supplement to the Draft Environmental Impact Statement. OCS EIS/EA, BOEM 2020-025 [Internet]. 2020. Available: https://www.boem.gov/sites/default/files/documents/renewable-energy/Vineyard-Wind-1-Supplement-to-EIS.pdf
82.
Madden C, Grossman D. A framework for a Coastal/Marine Ecological Classification Standard (CMECS). Special Paper - Geological Association of Canada. 2004; 185–209.
83.
Northwest Fisheries Science Center. Glossary [Internet]. Available: https://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/ic-glossary.cfm
84.
United Nations Food and Agricultural Organization. Fisheries Glossary [Internet]. Available: http://www.fao.org/fi/glossary/default.asp
85.
Wallace WH Richard K, Szedlmayer ST. Fisheries management for fisherman: A manual for helping fisherman understand the federal management process [Internet]. 1994. Available: http://hdl.handle.net/1969.3/23692
86.
United States NO, Administration A. NOAA fisheries glossary [Internet]. 2005. Available: https://repository.library.noaa.gov/view/noaa/12856
87.
Lemley DA, Adams JB. Eutrophication. In: Fath B, editor. Encyclopedia of Ecology (Second Edition). Second Edition. Oxford: Elsevier; 2019. pp. 86–90. doi:https://doi.org/10.1016/B978-0-12-409548-9.10957-1
88.
Service USNMF. NMFS Strategic Plan for Fisheries Research [Internet]. U.S. Department of Commerce, National Oceanic; Atmospheric Administration, National Marine Fisheries Service; 2004. Available: https://books.google.com/books?id=IkbxAAAAMAAJ
89.
Technical Documentation: State of the Ecosystem [Internet]. Available: https://doi.org/10.25923/64pf-sc70
90.
Wallace RK, Fletcher KM. Understanding fisheries management: A manual for understanding the federal fisheries management process, including analysis of the 1996 Sustainable Fisheries Act. 2000;
91.
Pauly D, Christensen V. Primary production required to sustain global fisheries. Nature. 1995; doi:10.1038/374255a0