References
1.
Hare JA, Morrison WE, Nelson MW, Stachura MM, Teeters EJ, Griffis RB, et al. A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf. PLOS ONE. 2016;11: e0146756. doi:10.1371/journal.pone.0146756
2.
EPA U. Ambient water quality criteria for dissolved oxygen, water clarity and chlorophyll-a for the Chesapeake Bay and its tidal tributaries. USEPA Region III Chesapeake Bay Program Office, Annapolis, Maryland,; 2003.
3.
Hernandez Cordero AL, Tango PJ, Batiuk RA. Development of a multimetric water quality Indicator for tracking progress towards the achievement of Chesapeake Bay water quality standards. Environmental Monitoring and Assessment. 2020;192: 94. doi:10.1007/s10661-019-7969-z
4.
EPA U. Ambient water quality criteria for dissolved oxygen, water clarity and chlorophyll-a for the Chesapeake Bay and its tidal tributaries: 2017 addendum. USEPA Region III Chesapeake Bay Program Office, Annapolis, Maryland,; 2017.
5.
Zhang Q, Murphy RR, Tian R, Forsyth MK, Trentacoste EM, Keisman J, et al. Chesapeake Bay’s water quality condition has been recovering: Insights from a multimetric indicator assessment of thirty years of tidal monitoring data. Science of The Total Environment. 2018;637-638: 1617–1625. doi:10.1016/j.scitotenv.2018.05.025
6.
Anderson DM, Kulis DM, Keafer BA, Gribble KE, Marin R, Scholin CA. Identification and enumeration of alexandrium spp. From the Gulf of Maine using molecular probes. Deep Sea Research Part II: Topical Studies in Oceanography. 2005;52: 2467–2490. doi:10.1016/j.dsr2.2005.06.015
7.
Li Y, Stumpf RP, McGillicuddy DJ, He R. Dynamics of an intense Alexandrium catenella red tide in the Gulf of Maine: Satellite observations and numerical modeling. Harmful Algae. 2020;99: 101927. doi:10.1016/j.hal.2020.101927
8.
Jin D, Hoagland P. The value of harmful algal bloom predictions to the nearshore commercial shellfish fishery in the Gulf of Maine. Harmful Algae. 2008;7: 772–781. doi:10.1016/j.hal.2008.03.002
9.
Anderson DM. Bloom dynamics of toxic Alexandrium species in the northeastern U.S. Limnology and Oceanography. 1997;42: 1009–1022. doi:10.4319/lo.1997.42.5_part_2.1009
10.
Thorson JT, Barnett LAK. Comparing estimates of abundance trends and distribution shifts using single- and multispecies models of fishes and biogenic habitat. ICES Journal of Marine Science. 2017;74: 1311–1321. doi:10.1093/icesjms/fsw193
11.
Thorson JT. Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fisheries Research. 2019;210: 143–161. doi:10.1016/j.fishres.2018.10.013
12.
Perretti C, Fogarty M, Friedland K, Hare J, Lucey S, McBride R, et al. Regime shifts in fish recruitment on the Northeast US Continental Shelf. Marine Ecology Progress Series. 2017;574: 1–11. doi:10.3354/meps12183
13.
Ji R, Edwards M, Mackas DL, Runge JA, Thomas AC. Marine plankton phenology and life history in a changing climate: Current research and future directions. Journal of Plankton Research. 2010;32: 1355–1368. doi:10.1093/plankt/fbq062
14.
Runge J. Integrated Sentinel Monitoring for the Northeast Region: Gap Assessment [Internet]. 2012. Available: https://www.researchgate.net/publication/253328872_Integrated_Sentinel_Monitoring_for_the_Northeast_Region_Gap_Assessment?enrichId=rgreq-ed87e103f2d0282dd4c539b05a5e2df1-XXX&enrichSource=Y292ZXJQYWdlOzI1MzMyODg3MjtBUzo5OTM4ODE3MzA2MjE1MEAxNDAwNzA3Mzk1MjQ2&el=1_x_2&_esc=publicationCoverPdf
15.
Ji R, Runge JA, Davis CS, Wiebe PH. Drivers of variability of Calanus finmarchicus in the Gulf of Maine: Roles of internal production and external exchange. ICES Journal of Marine Science. 2022;79: 775–784. doi:10.1093/icesjms/fsab147
16.
Runge J, Karp-Boss L, Dullaert E, Ji R, Motyka J, Young-Morse R, et al. Sustained monitoring of zooplankton populations at the Coastal Maine Time Series (CMTS) and Wilkinson Basin Time Series (WBTS) stations in the western Gulf of Maine: Results from 2005-2022. Sterling (VA): U.S. Department of the Interior, Bureau of Ocean Energy Management; 2023.
17.
Melle W, Runge J, Head E, Plourde S, Castellani C, Licandro P, et al. The North Atlantic Ocean as habitat for Calanus finmarchicus: Environmental factors and life history traits. Progress in Oceanography. 2014;129: 244–284. doi:10.1016/j.pocean.2014.04.026
18.
Record N, Runge J, Pendleton D, Balch W, Davies K, Pershing A, et al. Rapid Climate-Driven Circulation Changes Threaten Conservation of Endangered North Atlantic Right Whales. Oceanography. 2019;32. doi:10.5670/oceanog.2019.201
19.
Townsend DW, Pettigrew NR, Thomas MA, Moore S. Warming waters of the Gulf of Maine: The role of Shelf, Slope and Gulf Stream Water masses. Progress in Oceanography. 2023;215: 103030. doi:10.1016/j.pocean.2023.103030
20.
Shank B, Carloni JT, Geoghegan P, Fields DM, Goode AG, Walsh HJ, et al. Bridging the spawner-recruit disconnect II: Revealing basin-scale correlations between zooplankton and lobster settlement dynamics in the Gulf of Maine. Fisheries Research. 2024;278: 107082. doi:10.1016/j.fishres.2024.107082
21.
Pershing AJ, Kemberling A. Decadal comparisons identify the drivers of persistent changes in the zooplankton community structure in the northwest Atlantic. ICES Journal of Marine Science. 2023; fsad198. doi:10.1093/icesjms/fsad198
22.
Honda IA, Ji R, Britten GL, Thompson C, Solow AR, Zang Z, et al. Shifting phenology as a key driver of shelf zooplankton population variability. Limnology and Oceanography. 2024;n/a. doi:10.1002/lno.12752
23.
Maps F, Runge JA, Leising A, Pershing AJ, Record NR, Plourde S, et al. Modelling the timing and duration of dormancy in populations of Calanus finmarchicus from the Northwest Atlantic shelf. Journal of Plankton Research. 2012;34: 36–54. doi:10.1093/plankt/fbr088
24.
Durbin EG, Campbell RG, Casas MC, Ohman MD, Niehoff B, Runge J, et al. Interannual variation in phytoplankton blooms and zooplankton productivity and abundance in the Gulf of Maine during winter. Marine Ecology Progress Series. 2003;254: 81–100.
25.
Runge J, Plourde S, Joly P, Niehoff B, Durbin E. Characteristics of egg production of the planktonic copepod, Calanus finmarchicus, on Georges Bank: 1994–1999. Deep Sea Research Part II: Topical Studies in Oceanography. 2006;53: 2618–2631.
26.
Runge JA, Ji R, Thompson CR, Record NR, Chen C, Vandemark DC, et al. Persistence of Calanus finmarchicus in the western Gulf of Maine during recent extreme warming. Journal of Plankton Research. 2015;37: 221–232.
27.
Ji R, Feng Z, Jones BT, Thompson C, Chen C, Record NR, et al. Coastal amplification of supply and transport (CAST): A new hypothesis about the persistence of Calanus finmarchicus in the Gulf of Maine. ICES Journal of Marine Science. 2017;74: 1865–1874.
28.
Wiebe PH, Baumgartner MF, Copley NJ, Lawson GL, Davis C, Ji R, et al. Does predation control the diapausing stock of Calanus finmarchicus in the Gulf of Maine? Progress in Oceanography. 2022;206: 102861. doi:10.1016/j.pocean.2022.102861
29.
Casault B, Beazley L, Johnson C, Devred E, Head E. Chemical and Biological Oceanographic Conditions on the Scotian Shelf and in the Eastern Gulf of Maine During 2022. Fisheries; Oceans Canada, Maritimes Region; 2024.
30.
Runge JA, Plourde S. Fecundity characteristics of Calanus finmarchicus in coastal waters of eastern Canada. Ophelia. 1996;44: 171–187.
31.
Davis R. Diagnostic reasoning based on structure and behavior. Artificial intelligence. 1984;24: 347–410.
32.
Strand E, Klevjer T, Knutsen T, Melle W. Ecology of mesozooplankton across four North Atlantic basins. Deep Sea Research Part II: Topical Studies in Oceanography. 2020;180: 104844. doi:10.1016/j.dsr2.2020.104844
33.
Skjoldal HR, Eriksen E, Gjøsæter H. Size-fractioned zooplankton biomass in the Barents Sea: Spatial patterns and temporal variations during three decades of warming and strong fluctuations of the capelin stock (1989–2020). Progress in Oceanography. 2022;206: 102852. doi:10.1016/j.pocean.2022.102852
34.
Friedland KD, Boucher JM, Jones AW, Methratta ET, Morse RE, Foley C, et al. The spatial correlation between trawl surveys and planned wind energy infrastructure on the US Northeast Continental Shelf. ICES Journal of Marine Science. 2023; fsad167. doi:10.1093/icesjms/fsad167
35.
Northeast Fisheries Science Center (U.S.). Fall Management Track Assessments 2020. 2022; doi:10.25923/8N72-Q136
36.
Le Cren ED. The Length-Weight Relationship and Seasonal Cycle in Gonad Weight and Condition in the Perch (Perca fluviatilis). Journal of Animal Ecology. 1951;20: 201–219. doi:10.2307/1540
37.
Wigley S, McBride N, McHugh N. Length-weight relationships for 74 fish species collected during NEFSC research vessel bottom trawl surveys, 1992-99. 2003; Available: https://repository.library.noaa.gov/view/noaa/3346
38.
Erauskin-Extramiana M, Arrizabalaga H, Hobday AJ, Cabré A, Ibaibarriaga L, Arregui I, et al. Large-scale distribution of tuna species in a warming ocean. Global Change Biology. 2019;25: 2043–2060. doi:10.1111/gcb.14630
39.
Crear DP, Curtis TH, Hutt CP, Lee Y-W. Climate-influenced shifts in a highly migratory species recreational fishery. Fisheries Oceanography. 2023;32: 327–340. doi:10.1111/fog.12632
40.
Friedland KD, McManus MC, Morse RE, Link JS. Event scale and persistent drivers of fish and macroinvertebrate distributions on the Northeast US Shelf. ICES Journal of Marine Science. 2019;76: 1316–1334. doi:10.1093/icesjms/fsy167
41.
Dell’Apa A, Boenish R, Fujita R, Kleisner K. Effects of climate change and variability on large pelagic fish in the Northwest Atlantic Ocean: Implications for improving climate resilient management for pelagic longline fisheries. Frontiers in Marine Science. 2023;10. doi:10.3389/fmars.2023.1206911
42.
Koul V, Ross AC, Stock C, Zhang L, Delworth T, Wittenberg A. A Predicted Pause in the Rapid Warming of the Northwest Atlantic Shelf in the Coming Decade. Geophysical Research Letters. 2024;51: e2024GL110946. doi:10.1029/2024GL110946
43.
Ross AC, Stock CA, Koul V, Delworth TL, Lu F, Wittenberg A, et al. Dynamically downscaled seasonal ocean forecasts for North American east coast ecosystems. Ocean Science. 2024;20: 1631–1656. doi:10.5194/os-20-1631-2024
44.
Steimle F, Terranova R. Energy Equivalents of Marine Organisms from the Continental Shelf of the Temperate Northwest Atlantic. Journal of Northwest Atlantic Fishery Science. 1985;6. doi:10.2960/J.v6.a11
45.
Lawson JW, Magalhães AM, Miller EH. Important prey species of marine vertebrate predators in the northwest Atlantic: Proximate composition and energy density. Marine Ecology Progress Series. 1998;164: 13–20. Available: https://www.jstor.org/stable/24825521
46.
Brown-Peterson NJ, Wyanski DM, Saborido-Rey F, Macewicz BJ, Lowerre-Barbieri SK. A Standardized Terminology for Describing Reproductive Development in Fishes. Marine and Coastal Fisheries. 2011;3: 52–70. doi:10.1080/19425120.2011.555724
47.
Lambert Y, Dutil J-D. Energetic consequences of reproduction in Atlantic cod (Gadus morhua) in relation to spawning level of somatic energy reserves. Canadian Journal of Fisheries and Aquatic Sciences. 2000;57: 815–825. doi:10.1139/f00-022
48.
Wuenschel MJ, Deroba JJ. The Reproductive Biology of Female Atlantic Herring in U.S. Waters: Validating Classification Schemes for Assessing the Importance of Spring and Skipped Spawning. Marine and Coastal Fisheries. 2019;11: 487–505. doi:10.1002/mcf2.10099
49.
McBride RS, Somarakis S, Fitzhugh GR, Albert A, Yaragina NA, Wuenschel MJ, et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish and Fisheries. 2015;16: 23–57. doi:10.1111/faf.12043
50.
Trippel E, Neil S. Maternal and seasonal differences in egg sizes and spawning activity of northwest Atlantic haddock (Melanogrammus aeglefinus) in relation to body size and condition. Canadian Journal of Fisheries and Aquatic Sciences. 2011;61: 2097–2110. doi:10.1139/f04-125
51.
Wuenschel MJ, McElroy WD, Oliveira K, McBride RS. Measuring fish condition: An evaluation of new and old metrics for three species with contrasting life histories. Canadian Journal of Fisheries and Aquatic Sciences. 2019;76: 886–903. doi:10.1139/cjfas-2018-0076
52.
Manning AJ, Crim LW. Maternal and interannual comparison of the ovulatory periodicity, egg production and egg quality of the batch-spawning yellowtail flounder. Journal of Fish Biology. 1998;53: 954–972. doi:10.1111/j.1095-8649.1998.tb00456.x
53.
Friedland KD, Langan JA, Large SI, Selden RL, Link JS, Watson RA, et al. Changes in higher trophic level productivity, diversity and niche space in a rapidly warming continental shelf ecosystem. Science of The Total Environment. 2020;704: 135270. doi:10.1016/j.scitotenv.2019.135270
54.
Chavez-Rosales S, Josephson E, Palka D, Garrison L. Detection of Habitat Shifts of Cetacean Species: A Comparison Between 2010 and 2017 Habitat Suitability Conditions in the Northwest Atlantic Ocean. Frontiers in Marine Science. 2022;9. Available: https://www.frontiersin.org/articles/10.3389/fmars.2022.877580
55.
Lettrich MD, Asaro MJ, Borggaard DL, Dick DM, Griffis RB, Litz JA, et al. Vulnerability to climate change of United States marine mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean. PLOS ONE. 2023;18: e0290643. doi:10.1371/journal.pone.0290643
56.
Pace RM, Williams R, Kraus SD, Knowlton AR, Pettis HM. Cryptic mortality of North Atlantic right whales. Conservation Science and Practice. 2021;n/a: e346. doi:https://doi.org/10.1111/csp2.346
57.
Hayes S, Gardner S, Garrison LP, Henry A, Leandro L. North Atlantic Right Whales-Evaluating Their Recovery Challenges in 2018. NOAA Tech Memo NMFS NEFSC 247. 2018.
58.
Sorochan KA, Plourde S, Morse R, Pepin P, Runge J, Thompson C, et al. North Atlantic right whale (Eubalaena glacialis) and its food: (II) interannual variations in biomass of Calanus spp. On western North Atlantic shelves. Journal of Plankton Research. 2019;41: 687–708. doi:10.1093/plankt/fbz044
59.
Quintana-Rizzo E, Leiter S, Cole TVN, Hagbloom MN, Knowlton AR, Nagelkirk P, et al. Residency, demographics, and movement patterns of North Atlantic right whales Eubalaena glacialis in an offshore wind energy development area in southern New England, USA. Endangered Species Research. 2021;45: 251–268. doi:10.3354/esr01137
60.
Schick RS, Halpin PN, Read AJ, Slay CK, Kraus SD, Mate BR, et al. Striking the right balance in right whale conservation. Canadian Journal of Fisheries and Aquatic Sciences. 2009;66: 1399–1403. doi:10.1139/F09-115
61.
Christiansen N, Daewel U, Djath B, Schrum C. Emergence of Large-Scale Hydrodynamic Structures Due to Atmospheric Offshore Wind Farm Wakes. Frontiers in Marine Science. 2022;9. Available: https://www.frontiersin.org/article/10.3389/fmars.2022.818501
62.
White TP, Veit RR. Spatial ecology of long-tailed ducks and white-winged scoters wintering on Nantucket Shoals. Ecosphere. 2020;11: e03002. doi:10.1002/ecs2.3002
63.
Andrews JC, Mott PR. Gray Seals at Nantucket, Massachusetts. Journal of Mammalogy. 1967;48: 657–658. doi:10.2307/1377597
64.
Lelli B, Harris DE, Aboueissa A-M. Seal Bounties in Maine and Massachusetts, 1888 to 1962. Northeastern Naturalist. 2009;16: 239–254. Available: https://www.jstor.org/stable/27744561
65.
Wood SA, Josephson E, Precoda K, Murray KT. Gray seal (Halichoerus grypus) pupping trends and 2021 population estimate in U.S. Waters. Northeast Fisheries Science Center Reference Document 22-14. 2022.
66.
Wood SA, Murray KT, Josephson E, Gilbert J. Rates of increase in gray seal (Halichoerus grypus atlantica) pupping at recolonized sites in the United States, 1988–2019. Swanson B, editor. Journal of Mammalogy. 2020;101: 121–128. doi:10.1093/jmammal/gyz184
67.
Stevens JR, Kocik JF, Sheehan TF. Modeling the impacts of dams and stocking practices on an endangered Atlantic salmon (Salmo salar) population in the Penobscot River, Maine, USA. Canadian Journal of Fisheries and Aquatic Sciences. 2019;76: 1795–1807. doi:10.1139/cjfas-2018-0225
68.
Van Parijs SM, DeAngelis AI, Aldrich T, Gordon R, Holdman A, McCordic JA, et al. Establishing baselines for predicting change in ambient sound metrics, marine mammal, and vessel occurrence within a US offshore wind energy area. ICES Journal of Marine Science. 2023; fsad148. doi:10.1093/icesjms/fsad148
69.
Garrison L, Link J. Dietary guild structure of the fish community in the Northeast United States continental shelf ecosystem. Marine Ecology Progress Series. 2000;202: 231–240. doi:10.3354/meps202231
70.
Smith BE, Link JS. The Trophic Dynamics of 50 Finfish and 2 Squid Species on the Northeast US Continental Shelf. NOAA Technichal Memorandum NMFS-NE-216 [Internet]. National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026; 2010. Available: http://www.nefsc.noaa.gov/publications/tm/tm216/
71.
Pontavice H du, Miller TJ, Stock BC, Chen Z, Saba VS. Ocean model-based covariates improve a marine fish stock assessment when observations are limited. Hidalgo M, editor. ICES Journal of Marine Science. 2022;79: 1259–1273. doi:10.1093/icesjms/fsac050
72.
Ross AC, Stock CA, Adcroft A, Curchitser E, Hallberg R, Harrison MJ, et al. A high-resolution physical-biogeochemical model for marine resource applications in the northwest Atlantic (MOM6-COBALT-NWA12 v1. 0). Geoscientific Model Development Discussions. 2023;2023: 1–65.
73.
Jean-Michel L, Eric G, Romain B-B, Gilles G, Angélique M, Marie D, et al. The Copernicus global 1/12 oceanic and sea ice GLORYS12 reanalysis. Frontiers in Earth Science. 2021;9: 698876.
74.
Griffin LP, Griffin CR, Finn JT, Prescott RL, Faherty M, Still BM, et al. Warming seas increase cold-stunning events for Kemp’s ridley sea turtles in the northwest Atlantic. PLOS ONE. 2019;14: e0211503. doi:10.1371/journal.pone.0211503
75.
Lentz SJ. Seasonal warming of the Middle Atlantic Bight Cold Pool. Journal of Geophysical Research: Oceans. 2017;122: 941–954. doi:10.1002/2016JC012201
76.
Chen Z, Curchitser E, Chant R, Kang D. Seasonal Variability of the Cold Pool Over the Mid-Atlantic Bight Continental Shelf. Journal of Geophysical Research: Oceans. 2018;123: 8203–8226. doi:10.1029/2018JC014148
77.
Miles T, Murphy S, Kohut J, Borsetti S, Munroe D. Offshore Wind Energy and the Mid-Atlantic Cold Pool: A Review of Potential Interactions. Marine Technology Society Journal. 2021;55: 72–87. doi:10.4031/MTSJ.55.4.8
78.
Miller TJ, Hare JA, Alade LA. A state-space approach to incorporating environmental effects on recruitment in an age-structured assessment model with an application to southern New England yellowtail flounder. Canadian Journal of Fisheries and Aquatic Sciences. 2016;73: 1261–1270. doi:10.1139/cjfas-2015-0339
79.
Friedland KD, Miles T, Goode AG, Powell EN, Brady DC. The Middle Atlantic Bight Cold Pool is warming and shrinking: Indices from in situ autumn seafloor temperatures. Fisheries Oceanography. 2022;31: 217–223. doi:10.1111/fog.12573
80.
Powell EN, Ewing AM, Kuykendall KM. Ocean quahogs (Arctica islandica) and Atlantic surfclams (Spisula solidissima) on the Mid-Atlantic Bight continental shelf and Georges Bank: The death assemblage as a recorder of climate change and the reorganization of the continental shelf benthos. Palaeogeography, Palaeoclimatology, Palaeoecology. 2020;537: 109205. doi:10.1016/j.palaeo.2019.05.027
81.
Pace SM, Powell EN, Mann R. Two-hundred year record of increasing growth rates for ocean quahogs (Arctica islandica) from the northwestern Atlantic Ocean. Journal of Experimental Marine Biology and Ecology. 2018;503: 8–22. doi:10.1016/j.jembe.2018.01.010
82.
Chen Z, Kwon Y-O, Chen K, Fratantoni P, Gawarkiewicz G, Joyce TM, et al. Seasonal Prediction of Bottom Temperature on the Northeast U.S. Continental Shelf. Journal of Geophysical Research: Oceans. 2021;126: e2021JC017187. doi:10.1029/2021JC017187
83.
Joyce TM, Kwon Y-O, Yu L. On the Relationship between Synoptic Wintertime Atmospheric Variability and Path Shifts in the Gulf Stream and the Kuroshio Extension. Journal of Climate. 2009;22: 3177–3192. doi:10.1175/2008JCLI2690.1
84.
Joyce TM, Kwon Y-O, Seo H, Ummenhofer CC. Meridional Gulf Stream Shifts Can Influence Wintertime Variability in the North Atlantic Storm Track and Greenland Blocking. Geophysical Research Letters. 2019;46: 1702–1708. doi:10.1029/2018GL081087
85.
Chi L, Wolfe CLP, Hameed S. The Distinction Between the Gulf Stream and Its North Wall. Geophysical Research Letters. 2019;46: 8943–8951. doi:10.1029/2019GL083775
86.
Nye JA, Joyce TM, Kwon Y-O, Link JS. Gulf Stream position determines spatial distribution of silver hake. Nature Communications. 2011;2. doi:10.1038/ncomms1420
87.
Zhang R, Vallis GK. The Role of Bottom Vortex Stretching on the Path of the North Atlantic Western Boundary Current and on the Northern Recirculation Gyre. Journal of Physical Oceanography. 2007;37: 2053–2080. doi:10.1175/JPO3102.1
88.
Goddard PB, Yin J, Griffies SM, Zhang S. An extreme event of sea-level rise along the Northeast coast of North America in 2009–2010. Nature Communications. 2015;6. doi:10.1038/ncomms7346
89.
Gonçalves Neto A, Langan JA, Palter JB. Changes in the Gulf Stream preceded rapid warming of the Northwest Atlantic Shelf. Communications Earth & Environment. 2021;2: 1–10. doi:10.1038/s43247-021-00143-5
90.
Mountain DG. Labrador slope water entering the Gulf of Maine—response to the North Atlantic Oscillation. Continental Shelf Research. 2012;47: 150–155. doi:10.1016/j.csr.2012.07.008
91.
Gangopadhyay A, Gawarkiewicz G, Silva ENS, Monim M, Clark J. An Observed Regime Shift in the Formation of Warm Core Rings from the Gulf Stream. Scientific Reports. 2019;9: 1–9. doi:10.1038/s41598-019-48661-9
92.
Gangopadhyay A, Gawarkiewicz G, Silva ENS, Silver AM, Monim M, Clark J. A Census of the Warm-Core Rings of the Gulf Stream: 1980–2017. Journal of Geophysical Research: Oceans. 2020;125: e2019JC016033. doi:10.1029/2019JC016033
93.
Chen K, Gawarkiewicz G, Yang J. Mesoscale and Submesoscale Shelf-Ocean Exchanges Initialize an Advective Marine Heatwave. Journal of Geophysical Research: Oceans. 2022;127: e2021JC017927. doi:https://doi.org/10.1029/2021JC017927
94.
Gawarkiewicz G, Todd R, Zhang W, Partida J, Gangopadhyay A, Monim M-U-H, et al. The Changing Nature of Shelf-Break Exchange Revealed by the OOI Pioneer Array. Oceanography. 2018;31: 60–70. doi:10.5670/oceanog.2018.110
95.
Gawarkiewicz G, Fratantoni P, Bahr F, Ellertson A. Increasing Frequency of Mid-depth Salinity Maximum Intrusions in the Middle Atlantic Bight. Journal of Geophysical Research: Oceans.
96.
Gawarkiewicz G, Chen K, Forsyth J, Bahr F, Mercer AM, Ellertson A, et al. Characteristics of an Advective Marine Heatwave in the Middle Atlantic Bight in Early 2017. Frontiers in Marine Science. 2019;6. Available: https://www.frontiersin.org/article/10.3389/fmars.2019.00712
97.
Potter IF, Galuardi B, Howell WH. Horizontal movement of ocean sunfish, Mola mola, in the northwest Atlantic. Marine Biology. 2011;158: 531–540. doi:10.1007/s00227-010-1578-2
98.
Worm B, Lotze HK, Myers RA. Predator diversity hotspots in the blue ocean. Proceedings of the National Academy of Sciences. 2003;100: 9884–9888. doi:10.1073/pnas.1333941100
99.
Jacox MG, Alexander MA, Bograd SJ, Scott JD. Thermal displacement by marine heatwaves. Nature. 2020;584: 82–86. doi:10.1038/s41586-020-2534-z
100.
Jacox MG, Alexander MA, Amaya D, Becker E, Bograd SJ, Brodie S, et al. Global seasonal forecasts of marine heatwaves. Nature. 2022;604: 486–490. doi:10.1038/s41586-022-04573-9
101.
Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver ECJ, et al. A hierarchical approach to defining marine heatwaves. Progress in Oceanography. 2016;141: 227–238. doi:10.1016/j.pocean.2015.12.014
102.
Staudinger MD, Mills KE, Stamieszkin K, Record NR, Hudak CA, Allyn A, et al. It’s about time: A synthesis of changing phenology in the Gulf of Maine ecosystem. Fisheries Oceanography. 2019;28: 532–566. doi:10.1111/fog.12429
103.
Pendleton DE, Tingley MW, Ganley LC, Friedland KD, Mayo C, Brown MW, et al. Decadal-scale phenology and seasonal climate drivers of migratory baleen whales in a rapidly warming marine ecosystem. Global Change Biology. 2022;28: 4989–5005. doi:10.1111/gcb.16225
104.
Cohen JM, Lajeunesse MJ, Rohr JR. A global synthesis of animal phenological responses to climate change. Nature Climate Change. 2018;8: 224–228. doi:10.1038/s41558-018-0067-3
105.
O’Keefe CE, DeCelles GR. Forming a Partnership to Avoid Bycatch. Fisheries. 2013;38: 434–444. doi:10.1080/03632415.2013.838122
106.
Thomas AC, Pershing AJ, Friedland KD, Nye JA, Mills KE, Alexander MA, et al. Seasonal trends and phenology shifts in sea surface temperature on the North American northeastern continental shelf. Deming JW, Drinkwater K, editors. Elementa: Science of the Anthropocene. 2017;5: 48. doi:10.1525/elementa.240
107.
Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of The Total Environment. 2020;733: 137782. doi:10.1016/j.scitotenv.2020.137782
108.
Record NR, Pershing AJ, Rasher DB. Early Warning of a Cold Wave in the Gulf of Maine Oceanography. 2024; doi:https://doi.org/10.5670/oceanog.2024.506
109.
Balch WM. The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores. Annual Review of Marine Science. 2018;10: 71–98. doi:10.1146/annurev-marine-121916-063319
110.
Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Global Change Biology. 2013;19: 1884–1896. doi:10.1111/gcb.12179
111.
Saba GK, Goldsmith KA, Cooley SR, Grosse D, Meseck SL, Miller AW, et al. Recommended priorities for research on ecological impacts of ocean and coastal acidification in the U.S. Mid-Atlantic. Estuarine, Coastal and Shelf Science. 2019;225: 106188. doi:10.1016/j.ecss.2019.04.022
112.
Goldsmith KA, Lau S, Poach ME, Sakowicz GP, Trice TM, Ono CR, et al. Scientific considerations for acidification monitoring in the U.S. Mid-Atlantic Region. Estuarine, Coastal and Shelf Science. 2019;225: 106189. doi:10.1016/j.ecss.2019.04.023
113.
Wright‐Fairbanks EK, Miles TN, Cai W-J, Chen B, Saba GK. Autonomous Observation of Seasonal Carbonate Chemistry Dynamics in the Mid-Atlantic Bight. Journal of Geophysical Research: Oceans. 2020;125: e2020JC016505. doi:https://doi.org/10.1029/2020JC016505
114.
Xu Y-Y, Cai W-J, Wanninkhof R, Salisbury J, Reimer J, Chen B. Long-Term Changes of Carbonate Chemistry Variables Along the North American East Coast. Journal of Geophysical Research: Oceans. 2020;125: e2019JC015982. doi:10.1029/2019JC015982
115.
Gaichas SK, DePiper GS, Seagraves RJ, Muffley BW, Sabo M, Colburn LL, et al. Implementing Ecosystem Approaches to Fishery Management: Risk Assessment in the US Mid-Atlantic. Frontiers in Marine Science. 2018;5. doi:10.3389/fmars.2018.00442
116.
Link JS, Watson RA. Global ecosystem overfishing: Clear delineation within real limits to production. Science Advances. 2019;5: eaav0474. doi:10.1126/sciadv.aav0474
117.
Cross RM, Färe R. Value data and the Bennet price and quantity indicators. Economics Letters. 2009;102: 19–21. doi:10.1016/j.econlet.2008.10.003
118.
Balk BM. An Assumption-Free Framework for Measuring Productivity Change. Review of Income and Wealth. 2010;56: S224–S256. doi:10.1111/j.1475-4991.2010.00388.x
119.
Lim SH, Lovell CAK. Profit and productivity of US Class I railroads. Managerial and Decision Economics. 2009;30: 423–442. doi:10.1002/mde.1462
120.
Grifell-Tatjé E, Lovell CAK. Decomposing the dividend. Journal of Comparative Economics. 2004;32: 500–518. doi:10.1016/j.jce.2004.05.002
121.
BOEM. Vineyard Wind 1 Offshore Wind Energy Project Supplement to the Draft Environmental Impact Statement. OCS EIS/EA, BOEM 2020-025 [Internet]. 2020. Available: https://www.boem.gov/sites/default/files/documents/renewable-energy/Vineyard-Wind-1-Supplement-to-EIS.pdf
122.
Madden C, Grossman D. A framework for a Coastal/Marine Ecological Classification Standard (CMECS). Special Paper - Geological Association of Canada. 2004; 185–209.
123.
Northwest Fisheries Science Center. Glossary [Internet]. Available: https://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/ic-glossary.cfm
124.
United Nations Food and Agricultural Organization. Fisheries Glossary [Internet]. Available: http://www.fao.org/fi/glossary/default.asp
125.
Wallace WH Richard K, Szedlmayer ST. Fisheries management for fisherman: A manual for helping fisherman understand the federal management process [Internet]. 1994. Available: http://hdl.handle.net/1969.3/23692
126.
United States NO, Administration A. NOAA fisheries glossary [Internet]. 2005. Available: https://repository.library.noaa.gov/view/noaa/12856
127.
Lemley DA, Adams JB. Eutrophication. In: Fath B, editor. Encyclopedia of Ecology (Second Edition). Second Edition. Oxford: Elsevier; 2019. pp. 86–90. doi:https://doi.org/10.1016/B978-0-12-409548-9.10957-1
128.
Service USNMF. NMFS Strategic Plan for Fisheries Research [Internet]. U.S. Department of Commerce, National Oceanic; Atmospheric Administration, National Marine Fisheries Service; 2004. Available: https://books.google.com/books?id=IkbxAAAAMAAJ
129.
Technical Documentation: State of the Ecosystem [Internet]. Available: https://doi.org/10.25923/64pf-sc70
130.
Wallace RK, Fletcher KM. Understanding fisheries management: A manual for understanding the federal fisheries management process, including analysis of the 1996 Sustainable Fisheries Act. 2000;
131.
Pauly D, Christensen V. Primary production required to sustain global fisheries. Nature. 1995; doi:10.1038/374255a0