References

1.
Hare JA, Morrison WE, Nelson MW, Stachura MM, Teeters EJ, Griffis RB, et al. A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf. PLOS ONE. 2016;11: e0146756. doi:10.1371/journal.pone.0146756
2.
EPA U. Ambient water quality criteria for dissolved oxygen, water clarity and chlorophyll-a for the Chesapeake Bay and its tidal tributaries. USEPA Region III Chesapeake Bay Program Office, Annapolis, Maryland,; 2003.
3.
Hernandez Cordero AL, Tango PJ, Batiuk RA. Development of a multimetric water quality Indicator for tracking progress towards the achievement of Chesapeake Bay water quality standards. Environmental Monitoring and Assessment. 2020;192: 94. doi:10.1007/s10661-019-7969-z
4.
EPA U. Ambient water quality criteria for dissolved oxygen, water clarity and chlorophyll-a for the Chesapeake Bay and its tidal tributaries: 2017 addendum. USEPA Region III Chesapeake Bay Program Office, Annapolis, Maryland,; 2017.
5.
Zhang Q, Murphy RR, Tian R, Forsyth MK, Trentacoste EM, Keisman J, et al. Chesapeake Bay’s water quality condition has been recovering: Insights from a multimetric indicator assessment of thirty years of tidal monitoring data. Science of The Total Environment. 2018;637-638: 1617–1625. doi:10.1016/j.scitotenv.2018.05.025
6.
Anderson DM, Kulis DM, Keafer BA, Gribble KE, Marin R, Scholin CA. Identification and enumeration of alexandrium spp. From the Gulf of Maine using molecular probes. Deep Sea Research Part II: Topical Studies in Oceanography. 2005;52: 2467–2490. doi:10.1016/j.dsr2.2005.06.015
7.
Li Y. NOAA/NOS NCCOS Stressor Detection and Impacts Division [Internet]. Available: https://www.fisheries.noaa.gov/inport/item/45863
8.
Li Y, He R, McGillicuddy DJ, Anderson DM, Keafer BA. Investigation of the 2006 Alexandrium fundyense bloom in the Gulf of Maine: In-situ observations and numerical modeling. Continental Shelf Research. 2009;29: 2069–2082. doi:10.1016/j.csr.2009.07.012
9.
Li Y, Stumpf RP, McGillicuddy DJ, He R. Dynamics of an intense Alexandrium catenella red tide in the Gulf of Maine: Satellite observations and numerical modeling. Harmful Algae. 2020;99: 101927. doi:10.1016/j.hal.2020.101927
10.
McGillicuddy Jr D. J., Townsend DW, He R, Keafer BA, Kleindinst JL, Li Y, et al. Suppression of the 2010 Alexandrium fundyense bloom by changes in physical, biological, and chemical properties of the Gulf of Maine. Limnology and Oceanography. 2011;56: 2411–2426. doi:10.4319/lo.2011.56.6.2411
11.
Jin D, Hoagland P. The value of harmful algal bloom predictions to the nearshore commercial shellfish fishery in the Gulf of Maine. Harmful Algae. 2008;7: 772–781. doi:10.1016/j.hal.2008.03.002
12.
Anderson DM. Bloom dynamics of toxic Alexandrium species in the northeastern U.S. Limnology and Oceanography. 1997;42: 1009–1022. doi:10.4319/lo.1997.42.5_part_2.1009
13.
Kleindinst JL, Anderson DM, McGillicuddy DJ, Stumpf RP, Fisher KM, Couture DA, et al. Categorizing the severity of paralytic shellfish poisoning outbreaks in the Gulf of Maine for forecasting and management. Deep-sea research Part II, Topical studies in oceanography. 2014;103: 277–287. doi:10.1016/j.dsr2.2013.03.027
14.
Record N, Runge J, Pendleton D, Balch W, Davies K, Pershing A, et al. Rapid Climate-Driven Circulation Changes Threaten Conservation of Endangered North Atlantic Right Whales. Oceanography. 2019;32. doi:10.5670/oceanog.2019.201
15.
Meyer-Gutbrod EL, Greene CH, Davies KTA, Johns DG. Ocean Regime Shift Is Driving Collapse of the North Atlantic Right Whale Population. Oceanography. 2021;34: 22–31. Available: https://www.jstor.org/stable/27051387
16.
Ji R, Runge JA, Davis CS, Wiebe PH. Drivers of variability of Calanus finmarchicus in the Gulf of Maine: Roles of internal production and external exchange. ICES Journal of Marine Science. 2022;79: 775–784. doi:10.1093/icesjms/fsab147
17.
Pershing AJ, Kemberling A. Decadal comparisons identify the drivers of persistent changes in the zooplankton community structure in the northwest Atlantic. ICES Journal of Marine Science. 2023; fsad198. doi:10.1093/icesjms/fsad198
18.
Casault B, Johnson C, Devred E, Head E, Beazley L, Spry J. Optical, chemical, and biological oceanographic conditions on the Scotian Shelf and in the eastern Gulf of Maine during 2020 / B. Casault, C. Johnson, E. Devred, E. Head, L. Beazley, and J. Spry.: Fs70-5/2022-018E-PDF - Government of Canada Publications - Canada.ca [Internet]. 2022. Available: https://publications.gc.ca/site/eng/9.909043/publication.html
19.
Runge J, Karp-Boss L, Dullaert E, Ji R, Motyka J, Young-Morse R, et al. Sustained monitoring of zooplankton populations at the Coastal Maine Time Series (CMTS) and Wilkinson Basin Time Series (WBTS) stations in the western Gulf of Maine: Results from 2005-2022. Sterling (VA): U.S. Department of the Interior, Bureau of Ocean Energy Management; 2023.
20.
Dullaert EC. The Response of the Zooplankton Community in the Western Gulf of Maine to a Shift in Oceanographic Conditions: 2005-2017 - ProQuest [Internet]. PhD thesis. 2023. Available: https://www.proquest.com/openview/94bd0ad57c25a1623c75df0c0d4f5d82/1?pq-origsite=gscholar&cbl=18750&diss=y
21.
Suca JJ, Wiley DN, Silva TL, Robuck AR, Richardson DE, Glancy SG, et al. Sensitivity of sand lance to shifting prey and hydrography indicates forthcoming change to the northeast US shelf forage fish complex. ICES Journal of Marine Science. 2021;78: 1023–1037. doi:10.1093/icesjms/fsaa251
22.
Pershing AJ, Greene CH, Jossi JW, O’Brien L, Brodziak JKT, Bailey BA. Interdecadal variability in the Gulf of Maine zooplankton community, with potential impacts on fish recruitment. ICES Journal of Marine Science. 2005;62: 1511–1523. doi:10.1016/j.icesjms.2005.04.025
23.
Grieve BD, Hare JA, Saba VS. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf. Scientific Reports. 2017;7: 6264. doi:10.1038/s41598-017-06524-1
24.
Lafontaine Y de, Demers S, Runge JA. Pelagic food web interactions and productivity in the Gulf of St. Lawrence: A perspective. Can Spec Publ Fish Aquat Sci. 1991;113: 99–124.
25.
Sorochan KA, Plourde S, Morse R, Pepin P, Runge J, Thompson C, et al. North Atlantic right whale (Eubalaena glacialis) and its food: (II) interannual variations in biomass of Calanus spp. On western North Atlantic shelves. Journal of Plankton Research. 2019;41: 687–708. doi:10.1093/plankt/fbz044
26.
Melle W, Runge J, Head E, Plourde S, Castellani C, Licandro P, et al. The North Atlantic Ocean as habitat for Calanus finmarchicus: Environmental factors and life history traits. Progress in Oceanography. 2014;129: 244–284. doi:10.1016/j.pocean.2014.04.026
27.
Skjoldal HR, Eriksen E, Gjøsæter H. Size-fractioned zooplankton biomass in the Barents Sea: Spatial patterns and temporal variations during three decades of warming and strong fluctuations of the capelin stock (1989–2020). Progress in Oceanography. 2022;206: 102852. doi:10.1016/j.pocean.2022.102852
28.
Friedland KD, Boucher JM, Jones AW, Methratta ET, Morse RE, Foley C, et al. The spatial correlation between trawl surveys and planned wind energy infrastructure on the US Northeast Continental Shelf. ICES Journal of Marine Science. 2023; fsad167. doi:10.1093/icesjms/fsad167
29.
Northeast Fisheries Science Center (U.S.). Fall Management Track Assessments 2020. 2022; doi:10.25923/8N72-Q136
30.
Le Cren ED. The Length-Weight Relationship and Seasonal Cycle in Gonad Weight and Condition in the Perch (Perca fluviatilis). Journal of Animal Ecology. 1951;20: 201–219. doi:10.2307/1540
31.
Wigley S, McBride N, McHugh N. Length-weight relationships for 74 fish species collected during NEFSC research vessel bottom trawl surveys, 1992-99. 2003; Available: https://repository.library.noaa.gov/view/noaa/3346
32.
Perretti C, Fogarty M, Friedland K, Hare J, Lucey S, McBride R, et al. Regime shifts in fish recruitment on the Northeast US Continental Shelf. Marine Ecology Progress Series. 2017;574: 1–11. doi:10.3354/meps12183
33.
Friedland KD, McManus MC, Morse RE, Link JS. Event scale and persistent drivers of fish and macroinvertebrate distributions on the Northeast US Shelf. ICES Journal of Marine Science. 2019;76: 1316–1334. doi:10.1093/icesjms/fsy167
34.
Steimle F, Terranova R. Energy Equivalents of Marine Organisms from the Continental Shelf of the Temperate Northwest Atlantic. Journal of Northwest Atlantic Fishery Science. 1985;6. doi:10.2960/J.v6.a11
35.
Lawson JW, Magalhães AM, Miller EH. Important prey species of marine vertebrate predators in the northwest Atlantic: Proximate composition and energy density. Marine Ecology Progress Series. 1998;164: 13–20. Available: https://www.jstor.org/stable/24825521
36.
Brown-Peterson NJ, Wyanski DM, Saborido-Rey F, Macewicz BJ, Lowerre-Barbieri SK. A Standardized Terminology for Describing Reproductive Development in Fishes. Marine and Coastal Fisheries. 2011;3: 52–70. doi:10.1080/19425120.2011.555724
37.
Lambert Y, Dutil J-D. Energetic consequences of reproduction in Atlantic cod (Gadus morhua) in relation to spawning level of somatic energy reserves. Canadian Journal of Fisheries and Aquatic Sciences. 2000;57: 815–825. doi:10.1139/f00-022
38.
Wuenschel MJ, Deroba JJ. The Reproductive Biology of Female Atlantic Herring in U.S. Waters: Validating Classification Schemes for Assessing the Importance of Spring and Skipped Spawning. Marine and Coastal Fisheries. 2019;11: 487–505. doi:10.1002/mcf2.10099
39.
McBride RS, Somarakis S, Fitzhugh GR, Albert A, Yaragina NA, Wuenschel MJ, et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish and Fisheries. 2015;16: 23–57. doi:10.1111/faf.12043
40.
Trippel E, Neil S. Maternal and seasonal differences in egg sizes and spawning activity of northwest Atlantic haddock (Melanogrammus aeglefinus) in relation to body size and condition. Canadian Journal of Fisheries and Aquatic Sciences. 2011;61: 2097–2110. doi:10.1139/f04-125
41.
Wuenschel MJ, McElroy WD, Oliveira K, McBride RS. Measuring fish condition: An evaluation of new and old metrics for three species with contrasting life histories. Canadian Journal of Fisheries and Aquatic Sciences. 2019;76: 886–903. doi:10.1139/cjfas-2018-0076
42.
Manning AJ, Crim LW. Maternal and interannual comparison of the ovulatory periodicity, egg production and egg quality of the batch-spawning yellowtail flounder. Journal of Fish Biology. 1998;53: 954–972. doi:10.1111/j.1095-8649.1998.tb00456.x
43.
Friedland KD, Langan JA, Large SI, Selden RL, Link JS, Watson RA, et al. Changes in higher trophic level productivity, diversity and niche space in a rapidly warming continental shelf ecosystem. Science of The Total Environment. 2020;704: 135270. doi:10.1016/j.scitotenv.2019.135270
44.
Chavez-Rosales S, Josephson E, Palka D, Garrison L. Detection of Habitat Shifts of Cetacean Species: A Comparison Between 2010 and 2017 Habitat Suitability Conditions in the Northwest Atlantic Ocean. Frontiers in Marine Science. 2022;9. Available: https://www.frontiersin.org/articles/10.3389/fmars.2022.877580
45.
Lettrich MD, Asaro MJ, Borggaard DL, Dick DM, Griffis RB, Litz JA, et al. Vulnerability to climate change of United States marine mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean. PLOS ONE. 2023;18: e0290643. doi:10.1371/journal.pone.0290643
46.
Pace RM, Williams R, Kraus SD, Knowlton AR, Pettis HM. Cryptic mortality of North Atlantic right whales. Conservation Science and Practice. 2021;n/a: e346. doi:https://doi.org/10.1111/csp2.346
47.
Hayes S, Gardner S, Garrison LP, Henry A, Leandro L. North Atlantic Right Whales-Evaluating Their Recovery Challenges in 2018. NOAA Tech Memo NMFS NEFSC 247. 2018.
48.
Quintana-Rizzo E, Leiter S, Cole TVN, Hagbloom MN, Knowlton AR, Nagelkirk P, et al. Residency, demographics, and movement patterns of North Atlantic right whales Eubalaena glacialis in an offshore wind energy development area in southern New England, USA. Endangered Species Research. 2021;45: 251–268. doi:10.3354/esr01137
49.
Schick RS, Halpin PN, Read AJ, Slay CK, Kraus SD, Mate BR, et al. Striking the right balance in right whale conservation. Canadian Journal of Fisheries and Aquatic Sciences. 2009;66: 1399–1403. doi:10.1139/F09-115
50.
Christiansen N, Daewel U, Djath B, Schrum C. Emergence of Large-Scale Hydrodynamic Structures Due to Atmospheric Offshore Wind Farm Wakes. Frontiers in Marine Science. 2022;9. Available: https://www.frontiersin.org/article/10.3389/fmars.2022.818501
51.
White TP, Veit RR. Spatial ecology of long-tailed ducks and white-winged scoters wintering on Nantucket Shoals. Ecosphere. 2020;11: e03002. doi:10.1002/ecs2.3002
52.
Andrews JC, Mott PR. Gray Seals at Nantucket, Massachusetts. Journal of Mammalogy. 1967;48: 657–658. doi:10.2307/1377597
53.
Lelli B, Harris DE, Aboueissa A-M. Seal Bounties in Maine and Massachusetts, 1888 to 1962. Northeastern Naturalist. 2009;16: 239–254. Available: https://www.jstor.org/stable/27744561
54.
Wood SA, Josephson E, Precoda K, Murray KT. Gray seal (Halichoerus grypus) pupping trends and 2021 population estimate in U.S. Waters. Northeast Fisheries Science Center Reference Document 22-14. 2022.
55.
Wood SA, Murray KT, Josephson E, Gilbert J. Rates of increase in gray seal (Halichoerus grypus atlantica) pupping at recolonized sites in the United States, 1988–2019. Swanson B, editor. Journal of Mammalogy. 2020;101: 121–128. doi:10.1093/jmammal/gyz184
56.
Stevens JR, Kocik JF, Sheehan TF. Modeling the impacts of dams and stocking practices on an endangered Atlantic salmon (Salmo salar) population in the Penobscot River, Maine, USA. Canadian Journal of Fisheries and Aquatic Sciences. 2019;76: 1795–1807. doi:10.1139/cjfas-2018-0225
57.
Garrison L, Link J. Dietary guild structure of the fish community in the Northeast United States continental shelf ecosystem. Marine Ecology Progress Series. 2000;202: 231–240. doi:10.3354/meps202231
58.
Smith BE, Link JS. The Trophic Dynamics of 50 Finfish and 2 Squid Species on the Northeast US Continental Shelf. NOAA Technichal Memorandum NMFS-NE-216 [Internet]. National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026; 2010. Available: http://www.nefsc.noaa.gov/publications/tm/tm216/
59.
Pontavice H du, Miller TJ, Stock BC, Chen Z, Saba VS. Ocean model-based covariates improve a marine fish stock assessment when observations are limited. Hidalgo M, editor. ICES Journal of Marine Science. 2022;79: 1259–1273. doi:10.1093/icesjms/fsac050
60.
Griffin LP, Griffin CR, Finn JT, Prescott RL, Faherty M, Still BM, et al. Warming seas increase cold-stunning events for Kemp’s ridley sea turtles in the northwest Atlantic. PLOS ONE. 2019;14: e0211503. doi:10.1371/journal.pone.0211503
61.
Lentz SJ. Seasonal warming of the Middle Atlantic Bight Cold Pool. Journal of Geophysical Research: Oceans. 2017;122: 941–954. doi:10.1002/2016JC012201
62.
Chen Z, Curchitser E, Chant R, Kang D. Seasonal Variability of the Cold Pool Over the Mid-Atlantic Bight Continental Shelf. Journal of Geophysical Research: Oceans. 2018;123: 8203–8226. doi:10.1029/2018JC014148
63.
Miles T, Murphy S, Kohut J, Borsetti S, Munroe D. Offshore Wind Energy and the Mid-Atlantic Cold Pool: A Review of Potential Interactions. Marine Technology Society Journal. 2021;55: 72–87. doi:10.4031/MTSJ.55.4.8
64.
Miller TJ, Hare JA, Alade LA. A state-space approach to incorporating environmental effects on recruitment in an age-structured assessment model with an application to southern New England yellowtail flounder. Canadian Journal of Fisheries and Aquatic Sciences. 2016;73: 1261–1270. doi:10.1139/cjfas-2015-0339
65.
Friedland KD, Miles T, Goode AG, Powell EN, Brady DC. The Middle Atlantic Bight Cold Pool is warming and shrinking: Indices from in situ autumn seafloor temperatures. Fisheries Oceanography. 2022;31: 217–223. doi:10.1111/fog.12573
66.
Powell EN, Ewing AM, Kuykendall KM. Ocean quahogs (Arctica islandica) and Atlantic surfclams (Spisula solidissima) on the Mid-Atlantic Bight continental shelf and Georges Bank: The death assemblage as a recorder of climate change and the reorganization of the continental shelf benthos. Palaeogeography, Palaeoclimatology, Palaeoecology. 2020;537: 109205. doi:10.1016/j.palaeo.2019.05.027
67.
Pace SM, Powell EN, Mann R. Two-hundred year record of increasing growth rates for ocean quahogs (Arctica islandica) from the northwestern Atlantic Ocean. Journal of Experimental Marine Biology and Ecology. 2018;503: 8–22. doi:10.1016/j.jembe.2018.01.010
68.
Joyce TM, Kwon Y-O, Yu L. On the Relationship between Synoptic Wintertime Atmospheric Variability and Path Shifts in the Gulf Stream and the Kuroshio Extension. Journal of Climate. 2009;22: 3177–3192. doi:10.1175/2008JCLI2690.1
69.
Joyce TM, Kwon Y-O, Seo H, Ummenhofer CC. Meridional Gulf Stream Shifts Can Influence Wintertime Variability in the North Atlantic Storm Track and Greenland Blocking. Geophysical Research Letters. 2019;46: 1702–1708. doi:10.1029/2018GL081087
70.
Chi L, Wolfe CLP, Hameed S. The Distinction Between the Gulf Stream and Its North Wall. Geophysical Research Letters. 2019;46: 8943–8951. doi:10.1029/2019GL083775
71.
Nye JA, Joyce TM, Kwon Y-O, Link JS. Gulf Stream position determines spatial distribution of silver hake. Nature Communications. 2011;2. doi:10.1038/ncomms1420
72.
Zhang R, Vallis GK. The Role of Bottom Vortex Stretching on the Path of the North Atlantic Western Boundary Current and on the Northern Recirculation Gyre. Journal of Physical Oceanography. 2007;37: 2053–2080. doi:10.1175/JPO3102.1
73.
Goddard PB, Yin J, Griffies SM, Zhang S. An extreme event of sea-level rise along the Northeast coast of North America in 2009–2010. Nature Communications. 2015;6. doi:10.1038/ncomms7346
74.
Gonçalves Neto A, Langan JA, Palter JB. Changes in the Gulf Stream preceded rapid warming of the Northwest Atlantic Shelf. Communications Earth & Environment. 2021;2: 1–10. doi:10.1038/s43247-021-00143-5
75.
Mountain DG. Labrador slope water entering the Gulf of Maine—response to the North Atlantic Oscillation. Continental Shelf Research. 2012;47: 150–155. doi:10.1016/j.csr.2012.07.008
76.
Gangopadhyay A, Gawarkiewicz G, Silva ENS, Monim M, Clark J. An Observed Regime Shift in the Formation of Warm Core Rings from the Gulf Stream. Scientific Reports. 2019;9: 1–9. doi:10.1038/s41598-019-48661-9
77.
Gangopadhyay A, Gawarkiewicz G, Silva ENS, Silver AM, Monim M, Clark J. A Census of the Warm-Core Rings of the Gulf Stream: 1980–2017. Journal of Geophysical Research: Oceans. 2020;125: e2019JC016033. doi:10.1029/2019JC016033
78.
Chen K, Gawarkiewicz G, Yang J. Mesoscale and Submesoscale Shelf-Ocean Exchanges Initialize an Advective Marine Heatwave. Journal of Geophysical Research: Oceans. 2022;127: e2021JC017927. doi:https://doi.org/10.1029/2021JC017927
79.
Gawarkiewicz G, Todd R, Zhang W, Partida J, Gangopadhyay A, Monim M-U-H, et al. The Changing Nature of Shelf-Break Exchange Revealed by the OOI Pioneer Array. Oceanography. 2018;31: 60–70. doi:10.5670/oceanog.2018.110
80.
Gawarkiewicz G, Fratantoni P, Bahr F, Ellertson A. Increasing Frequency of Mid-depth Salinity Maximum Intrusions in the Middle Atlantic Bight. Journal of Geophysical Research: Oceans.
81.
Gawarkiewicz G, Chen K, Forsyth J, Bahr F, Mercer AM, Ellertson A, et al. Characteristics of an Advective Marine Heatwave in the Middle Atlantic Bight in Early 2017. Frontiers in Marine Science. 2019;6. Available: https://www.frontiersin.org/article/10.3389/fmars.2019.00712
82.
Potter IF, Galuardi B, Howell WH. Horizontal movement of ocean sunfish, Mola mola, in the northwest Atlantic. Marine Biology. 2011;158: 531–540. doi:10.1007/s00227-010-1578-2
83.
Worm B, Lotze HK, Myers RA. Predator diversity hotspots in the blue ocean. Proceedings of the National Academy of Sciences. 2003;100: 9884–9888. doi:10.1073/pnas.1333941100
84.
Jacox MG, Alexander MA, Bograd SJ, Scott JD. Thermal displacement by marine heatwaves. Nature. 2020;584: 82–86. doi:10.1038/s41586-020-2534-z
85.
Jacox MG, Alexander MA, Amaya D, Becker E, Bograd SJ, Brodie S, et al. Global seasonal forecasts of marine heatwaves. Nature. 2022;604: 486–490. doi:10.1038/s41586-022-04573-9
86.
Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver ECJ, et al. A hierarchical approach to defining marine heatwaves. Progress in Oceanography. 2016;141: 227–238. doi:10.1016/j.pocean.2015.12.014
87.
Chen Z, Kwon Y-O, Chen K, Fratantoni P, Gawarkiewicz G, Joyce TM, et al. Seasonal Prediction of Bottom Temperature on the Northeast U.S. Continental Shelf. Journal of Geophysical Research: Oceans. 2021;126: e2021JC017187. doi:10.1029/2021JC017187
88.
Staudinger MD, Mills KE, Stamieszkin K, Record NR, Hudak CA, Allyn A, et al. It’s about time: A synthesis of changing phenology in the Gulf of Maine ecosystem. Fisheries Oceanography. 2019;28: 532–566. doi:10.1111/fog.12429
89.
Crear DP, Curtis TH, Hutt CP, Lee Y-W. Climate-influenced shifts in a highly migratory species recreational fishery. Fisheries Oceanography. 2023;32: 327–340. doi:10.1111/fog.12632
90.
Pendleton DE, Tingley MW, Ganley LC, Friedland KD, Mayo C, Brown MW, et al. Decadal-scale phenology and seasonal climate drivers of migratory baleen whales in a rapidly warming marine ecosystem. Global Change Biology. 2022;28: 4989–5005. doi:10.1111/gcb.16225
91.
Cohen JM, Lajeunesse MJ, Rohr JR. A global synthesis of animal phenological responses to climate change. Nature Climate Change. 2018;8: 224–228. doi:10.1038/s41558-018-0067-3
92.
O’Keefe CE, DeCelles GR. Forming a Partnership to Avoid Bycatch. Fisheries. 2013;38: 434–444. doi:10.1080/03632415.2013.838122
93.
Thomas AC, Pershing AJ, Friedland KD, Nye JA, Mills KE, Alexander MA, et al. Seasonal trends and phenology shifts in sea surface temperature on the North American northeastern continental shelf. Deming JW, Drinkwater K, editors. Elementa: Science of the Anthropocene. 2017;5: 48. doi:10.1525/elementa.240
94.
Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of The Total Environment. 2020;733: 137782. doi:10.1016/j.scitotenv.2020.137782
95.
Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Global Change Biology. 2013;19: 1884–1896. doi:10.1111/gcb.12179
96.
Saba GK, Goldsmith KA, Cooley SR, Grosse D, Meseck SL, Miller AW, et al. Recommended priorities for research on ecological impacts of ocean and coastal acidification in the U.S. Mid-Atlantic. Estuarine, Coastal and Shelf Science. 2019;225: 106188. doi:10.1016/j.ecss.2019.04.022
97.
Goldsmith KA, Lau S, Poach ME, Sakowicz GP, Trice TM, Ono CR, et al. Scientific considerations for acidification monitoring in the U.S. Mid-Atlantic Region. Estuarine, Coastal and Shelf Science. 2019;225: 106189. doi:10.1016/j.ecss.2019.04.023
98.
Wright‐Fairbanks EK, Miles TN, Cai W-J, Chen B, Saba GK. Autonomous Observation of Seasonal Carbonate Chemistry Dynamics in the Mid-Atlantic Bight. Journal of Geophysical Research: Oceans. 2020;125: e2020JC016505. doi:https://doi.org/10.1029/2020JC016505
99.
Xu Y-Y, Cai W-J, Wanninkhof R, Salisbury J, Reimer J, Chen B. Long-Term Changes of Carbonate Chemistry Variables Along the North American East Coast. Journal of Geophysical Research: Oceans. 2020;125: e2019JC015982. doi:10.1029/2019JC015982
100.
Cameron LP, Grabowski JH, Ries JB. Effects of elevated pCO2 and temperature on the calcification rate, survival, extrapallial fluid chemistry, and respiration of the Atlantic Sea scallop Placopecten magellanicus. Limnology and Oceanography. 2022;67: 1670–1686. doi:10.1002/lno.12153
101.
Zakroff C, Mooney TA, Berumen ML. Dose-dependence and small-scale variability in responses to ocean acidification during squid, Doryteuthis pealeii, development. Marine Biology. 2019;166: 62. doi:10.1007/s00227-019-3510-8
102.
Zakroff CJ, Mooney TA. Antagonistic Interactions and Clutch-Dependent Sensitivity Induce Variable Responses to Ocean Acidification and Warming in Squid (Doryteuthis pealeii) Embryos and Paralarvae. Frontiers in Physiology. 2020;11. Available: https://www.frontiersin.org/articles/10.3389/fphys.2020.00501
103.
Gaichas SK, DePiper GS, Seagraves RJ, Muffley BW, Sabo M, Colburn LL, et al. Implementing Ecosystem Approaches to Fishery Management: Risk Assessment in the US Mid-Atlantic. Frontiers in Marine Science. 2018;5. doi:10.3389/fmars.2018.00442
104.
Link JS, Watson RA. Global ecosystem overfishing: Clear delineation within real limits to production. Science Advances. 2019;5: eaav0474. doi:10.1126/sciadv.aav0474
105.
Cross RM, Färe R. Value data and the Bennet price and quantity indicators. Economics Letters. 2009;102: 19–21. doi:10.1016/j.econlet.2008.10.003
106.
Balk BM. An Assumption-Free Framework for Measuring Productivity Change. Review of Income and Wealth. 2010;56: S224–S256. doi:10.1111/j.1475-4991.2010.00388.x
107.
Lim SH, Lovell CAK. Profit and productivity of US Class I railroads. Managerial and Decision Economics. 2009;30: 423–442. doi:10.1002/mde.1462
108.
Grifell-Tatjé E, Lovell CAK. Decomposing the dividend. Journal of Comparative Economics. 2004;32: 500–518. doi:10.1016/j.jce.2004.05.002
109.
BOEM. Vineyard Wind 1 Offshore Wind Energy Project Supplement to the Draft Environmental Impact Statement. OCS EIS/EA, BOEM 2020-025 [Internet]. 2020. Available: https://www.boem.gov/sites/default/files/documents/renewable-energy/Vineyard-Wind-1-Supplement-to-EIS.pdf
110.
Madden C, Grossman D. A framework for a Coastal/Marine Ecological Classification Standard (CMECS). Special Paper - Geological Association of Canada. 2004; 185–209.
111.
Northwest Fisheries Science Center. Glossary [Internet]. Available: https://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/ic-glossary.cfm
112.
United Nations Food and Agricultural Organization. Fisheries Glossary [Internet]. Available: http://www.fao.org/fi/glossary/default.asp
113.
Wallace WH Richard K, Szedlmayer ST. Fisheries management for fisherman: A manual for helping fisherman understand the federal management process [Internet]. 1994. Available: http://hdl.handle.net/1969.3/23692
114.
United States NO, Administration A. NOAA fisheries glossary [Internet]. 2005. Available: https://repository.library.noaa.gov/view/noaa/12856
115.
Lemley DA, Adams JB. Eutrophication. In: Fath B, editor. Encyclopedia of Ecology (Second Edition). Second Edition. Oxford: Elsevier; 2019. pp. 86–90. doi:https://doi.org/10.1016/B978-0-12-409548-9.10957-1
116.
Service USNMF. NMFS Strategic Plan for Fisheries Research [Internet]. U.S. Department of Commerce, National Oceanic; Atmospheric Administration, National Marine Fisheries Service; 2004. Available: https://books.google.com/books?id=IkbxAAAAMAAJ
117.
Technical Documentation: State of the Ecosystem [Internet]. Available: https://doi.org/10.25923/64pf-sc70
118.
Wallace RK, Fletcher KM. Understanding fisheries management: A manual for understanding the federal fisheries management process, including analysis of the 1996 Sustainable Fisheries Act. 2000;
119.
Pauly D, Christensen V. Primary production required to sustain global fisheries. Nature. 1995; doi:10.1038/374255a0