To use mscatch
you will need to compile two data sets
for a specific region of interest, whether a stock area, an ecological
production unit, or a larger area:
If you want a sample data set to begin to use mscatch
then you can use the function get_sample_data
Length data (lengths of sampled catch taken by port samplers) can be
pulled from the oracle table (stockeff.mv_cf_len
) under the
stock efficiency initiative or from the annual (cflen, wolen) AA tables.
It is then aggregated by YEAR, QTR, GEAR, MARKET_CODE to summarize two
data sets
This is then merged with the catch data.
The data set should have this form
#> # A tibble: 11 × 6
#> YEAR QTR NEGEAR MARKET_CODE LENGTH NUMLEN
#> <int> <int> <chr> <chr> <dbl> <int>
#> 1 1975 2 050 UN 37 4
#> 2 1975 2 050 UN 38 2
#> 3 1975 2 050 UN 25 1
#> 4 1975 2 050 UN 28 1
#> 5 1975 2 050 UN 30 1
#> 6 1975 2 050 UN 31 4
#> 7 1975 2 050 UN 32 8
#> 8 1975 2 050 UN 33 7
#> 9 1975 2 050 UN 34 14
#> 10 1975 2 050 UN 35 3
#> 11 1975 2 050 UN 36 4
where each row represents the number of fish sampled of a given length in YEAR, QTR, caught using NEGEAR and classed as MARKET_CODE
Landings data can be pulled from the oracle table
(stockeff.mv_cf_landings
) under the stock efficiency
initiative or from the annual (cfdet, wodet, woland) AA tables. If
pulled from the AA tables, the MARKET_CODE field does not exist. NESPP4
codes will need to be mapped to MARKET_CODE categories outlined
marketCodeLookupTable
. (created from comlandr::get_species_itis
)
Some trips will have missing information in the AREA field. These
trips will need to be assigned an area using the methods outlined by
(Palmer, 2008) prior to using
mscatch
. The package comlandr
replicates these methods.
Trips with missing gear information is handled in
mscatch
. It is assumed that trips with unknown gear
information are catching fish with lengths proportional to trips with
known gear types.
Discards are not included in this data. At a future date both comlandr
and the stock efficiency initiative will contain discard estimates using
the methods of (Wigley & Tholke, 2020).
The resulting Catch data is then merged with the biological samples
to summarize total catch (metric tons) by YEAR, QTR, GEAR, MARKET_CODE,
the number of biological samples taken (landings_nn
), and
the total number of fish sampled (len_totalNumlen
). The
data set should have this form:
#> # A tibble: 15 × 8
#> YEAR QTR NEGEAR MARKET_CODE landings_land landings_nn len_totalNumLen
#> <int> <int> <chr> <chr> <dbl> <int> <dbl>
#> 1 2000 1 010 UN 10935 7 NA
#> 2 2000 1 050 UN 185019 27 NA
#> 3 2000 1 100 UN 138712 65 NA
#> 4 2000 1 360 UN 34 1 NA
#> 5 2000 2 010 UN 525450 117 250
#> 6 2000 2 020 UN 81 3 NA
#> 7 2000 2 050 UN 12754 45 NA
#> 8 2000 2 100 UN 319747 433 125
#> 9 2000 2 360 UN 2496 12 NA
#> 10 2000 3 010 UN 3122083 512 655
#> 11 2000 3 020 UN 128054 41 NA
#> 12 2000 3 050 UN 3680 11 NA
#> 13 2000 3 100 UN 280584 266 100
#> 14 2000 4 050 UN 2160 9 NA
#> 15 2000 4 100 UN 4912 16 NA
#> # ℹ 1 more variable: len_numLengthSamples <int>
mscatch
Once the above data sets have been assembled they can now be used to
aggregate the landings and length
samples and then expand the
commercial landings data to length distributions using
mscatch