The IEA Loop1
Ecosystem indicators linked to management objectives (DePiper et al., 2017)
Open science emphasis (Bastille et al., 2021)
Used within Mid-Atlantic Fishery Management Council's Ecosystem Process (Muffley et al., 2021)
The IEA Loop1
Objective Categories | Indicators reported |
---|---|
Provisioning and Cultural Services | |
Seafood Production | Landings; commercial total and by feeding guild; recreational harvest |
Profits | Revenue decomposed to price and volume |
Recreation | Angler trips; recreational fleet diversity |
Stability | Diversity indices (fishery and ecosystem) |
Social & Cultural | Community engagement/reliance and environmental justice status |
Protected Species | Bycatch; population (adult and juvenile) numbers, mortalities |
Supporting and Regulating Services | |
Biomass | Biomass or abundance by feeding guild from surveys |
Productivity | Condition and recruitment of managed species, primary productivity |
Trophic structure | Relative biomass of feeding guilds, zooplankton |
Habitat | Estuarine and offshore habitat conditions |
Spatial scale
A glossary of terms, detailed technical methods documentation, and indicator data and catalog are available online.
Key to figures
Trends assessed only for 30+ years: more information
Orange line = significant increase
Purple line = significant decrease
No color line = not significant or < 30 yearsGrey background = last 10 years
Performance relative to management objectives
Seafood production ,
Profits ,
Recreational opportunities: Effort
; Effort diversity
Stability: Fishery
; Ecological
Social and cultural, trend not evaluated, status of:
Protected species:
Risks to meeting fishery management objectives
Climate: risks to spatial and seasonal management, quota setting and rebuilding
Other ocean uses: offshore wind development
New section this year: 2023 Highlights
Notable 2023 events and conditions
Indicator: Commercial landings
Indicators: Recreational harvest
Multiple potential drivers of landings changes: ecosystem and stock production, management actions, market conditions, and environmental change.
The long-term declining trend in landings didn't change.
Indicator: Stock status
Most stocks have good status. Spiny dogfish B and F status have improved. Mackerel F status has improved, but B is still below the threshold. Summer flounder F exceeds the limit.
Indicators: Total ABC or ACL, and Realized catch relative to management target
Few managed species have binding limits; Management less likely playing a role
Stock status affects catch limits established by the Council, which in turn may affect landings trends. Summed across all MAFMC managed species, total Acceptable Biological Catch or Annual Catch Limits (ABC or ACL) have been relatively stable 2012-2020 (top). With the addition of blueline tilefish management in 2017, an additional ABC and ACL contribute to the total 2017-2020. Discounting blueline tilefish, the recent total ABC or ACL is lower relative to 2012-2013, with much of that decrease due to declining Atlantic mackerel ABC.
Nevertheless, the percentage caught for each stock’s ABC/ACL suggests that these catch limits are not generally constraining as most species are well below the 1/1 ratio (bottom). Therefore, stock status and associated management constraints are unlikely to be driving decreased landings for the majority of species.
Biomass does not appear to drive landings trends
Key: Black = NEFSC survey; Red = NEAMAP survey New species categories, more southern species in Benthivores
Declining managed benthos, aggregate planktivores
Markets and availability (benthos), fishery consolidation (planktivores)
Monitor:
Stock status is above the minimum threshold for all but two stocks, and aggregate biomass trends appear stable, so the decline in managed commercial seafood landings is most likely driven by market dynamics affecting the landings of surfclams and ocean quahogs, as landings have been below quotas for these species. In addition, regional availability of scallops has contributed to the decline of benthos landings not managed by the MAFMC, with some of the most productive grounds currently closed through rotational management. The long term decline in total planktivore landings is largely driven by Atlantic menhaden fishery dynamics, including a consolidation of processors leading to reduced fishing capacity between the 1990s and mid-2000s.
Recreational drivers differ: shark fishery management, possibly survey methodology
Climate change also seems to be shifting the distribution of surfclams and ocean quahogs, resulting in areas with overlapping distributions and increased mixed landings. Given the regulations governing mixed landings, this could become problematic in the future and is currently being evaluated by the Council.
Indicators: Fish distribution shifts
Cetacean distribution shifts
Drivers: Forage shifts, temperature increase
Drivers: changing ocean habitat
Cold pool temperature and spatial extent
Record low hypoxia in Chesapeake Bay since 1995, relatively cool summer with high salinity.
Sea scallop recruitment detected Spring 2022, gone in Spring 2023
Days in 2022 at or above scallop stress temperature 17-19 C →
In Chesapeake Bay, hypoxia conditions were the lowest on record (since 1995), creating more suitable habitat for multiple fin fish and benthic species. Cooler Chesapeake Bay water temperatures paired with low hypoxia in the summer suggest conditions that season were favorable for striped bass. Cooler summer temperatures also support juvenile summer flounder growth. However, warmer winter and spring water temperatures in the Chesapeake Bay, along with other environmental factors (such as low flow), may have played a role in low production of juvenile striped bass in 2023. Higher-than-average salinity across the Bay was likely driven by low precipitation and increased the area of available habitat for species such as croaker, spot, menhaden, and red drum, while restricting habitat area for invasive blue catfish.
Management actions that rely on effective alignment of fisheries availability and biological processes should continue to evaluate whether prior assumptions on spatial distribution and seasonal timings still hold.
There is a real risk that short-term predictions in assessments and rebuilding plans that assume unchanging underlying conditions will not be as effective, given the observed change documented in both ecological and environmental processes.
With observations of system-wide productivity shifts of multiple managed stocks, more research is needed to determine whether regime shifts or ecosystem reorganization are occurring, and how this should be incorporated into management.
Near-term oceanographic forecasts are currently in development and may inform how future warming impacts species distributions, timing and productivity.
East Coast Climate Scenario Planning can help coordinate management.
https://github.com/NOAA-EDAB/presentations/raw/master/docs/EDAB_images/ScenPlanningOptions.png
Adapting management to changing stocks and dynamic ocean processes will require continued monitoring of populations in space and time, and evaluating management measures against a range of possible future conditions.
Bastille, K. et al. (2021). "Improving the IEA Approach Using Principles of Open Data Science". In: Coastal Management 49.1. Publisher: Taylor & Francis _ eprint: https://doi.org/10.1080/08920753.2021.1846155, pp. 72-89. ISSN: 0892-0753. DOI: 10.1080/08920753.2021.1846155. URL: https://doi.org/10.1080/08920753.2021.1846155 (visited on Apr. 16, 2021).
DePiper, G. S. et al. (2017). "Operationalizing integrated ecosystem assessments within a multidisciplinary team: lessons learned from a worked example". En. In: ICES Journal of Marine Science 74.8, pp. 2076-2086. ISSN: 1054-3139. DOI: 10.1093/icesjms/fsx038. URL: https://academic.oup.com/icesjms/article/74/8/2076/3094701 (visited on Mar. 09, 2018).
DePiper, G. et al. (2021). "Learning by doing: collaborative conceptual modelling as a path forward in ecosystem-based management". In: ICES Journal of Marine Science 78.4, pp. 1217-1228. ISSN: 1054-3139. DOI: 10.1093/icesjms/fsab054. URL: https://doi.org/10.1093/icesjms/fsab054 (visited on Aug. 08, 2022).
Gaichas, S. K. et al. (2018). "Implementing Ecosystem Approaches to Fishery Management: Risk Assessment in the US Mid-Atlantic". In: Frontiers in Marine Science 5. ISSN: 2296-7745. DOI: 10.3389/fmars.2018.00442. URL: https://www.frontiersin.org/articles/10.3389/fmars.2018.00442/abstract (visited on Nov. 20, 2018).
Muffley, B. et al. (2021). "There Is no I in EAFM Adapting Integrated Ecosystem Assessment for Mid-Atlantic Fisheries Management". In: Coastal Management 49.1. Publisher: Taylor & Francis _ eprint: https://doi.org/10.1080/08920753.2021.1846156, pp. 90-106. ISSN: 0892-0753. DOI: 10.1080/08920753.2021.1846156. URL: https://doi.org/10.1080/08920753.2021.1846156 (visited on Apr. 16, 2021).
Ecosystem indicators linked to management objectives (DePiper et al., 2017)
Open science emphasis (Bastille et al., 2021)
Used within Mid-Atlantic Fishery Management Council's Ecosystem Process (Muffley et al., 2021)
The IEA Loop1
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |