+ - 0:00:00
Notes for current slide
Notes for next slide

Potential pathways for using Ecpsystem
Thresholds in Fisheries Management

Thoughts from the Northeast US
20 May 2022

Scott Large and Sarah Gaichas
Northeast Fisheries Science Center

1 / 16

Fishery management in the US

Eight regional Fishery Management Councils establish plans for sustainable management of stocks within their jurisdictions. All are governed by the same law, but tailor management to their regional stakeholder needs.

US map highlighting regions for each fishery management council

2 / 16

schematic of northeast ESP process

3 / 16

Our ESP process was developed from the AFSC process, but we adjusted things slightly because of how our benchmarks are scheduled and because we are providing scientific advice to multiple Councils.

The ESP framework is an iterative cycle that complements the stock assessment cycle. First I will give you an overview of the ESP cycle, and then I will explain each step in more detail. The ESP begins with the development of the problem statement by identifying the topics that the assessment working group and ESP team want to assess. This process includes a literature review or other method of gathering existing information on the stock, such as reviewing prior assessments and research recommendations. Next, a conceptual model is created that links important processes and pressures to stock performance. From these linkages, we develop indicators that can be used to monitor the system conditions. Next, the indicators are analyzed to determine their status and the likely impacts on the stock. Some indicators may be tested for inclusion in assessment models. Finally, all of these analyses are synthesized into a report card to provide general recommendations for fishery management.

Pathways for scientific advice from the northeast ESP process

4 / 16

State of the Ecosystem (SOE) reporting

Improving ecosystem information and synthesis for fishery managers

2022 SOE Mid Atlantic Cover Page

5 / 16

State of the Ecosystem Summary 2022:

Performance relative to management objectives

Seafood production decreasing arrow icon, status not evaluated

Profits decreasing arrow icon, status not evaluated

Recreational opportunities: Effort increasing arrow icon above average icon icon; Effort diversity decreasing arrow icon below average icon icon

Stability: Fishery no trend icon near average icon icon; Ecological mixed trend icon near average icon icon

Social and cultural, trend not evaluated, status of:

  • Fishing engagement and reliance by community
  • Environmental Justice (EJ) Vulnerability by community

Protected species:

  • Maintain bycatch below thresholds mixed trend icon meeting objectives icon
  • Recover endangered populations (NARW) decreasing arrow icon below average icon icon
6 / 16

State of the Ecosystem → MAFMC Risk assessent example: Commercial revenue

This element is applied at the ecosystem level. Revenue serves as a proxy for commercial profits.

Risk Level Definition
Low No trend and low variability in revenue
Low-Moderate Increasing or high variability in revenue
Moderate-High Significant long term revenue decrease
High Significant recent decrease in revenue

Ranked moderate-high risk due to the significant long term revenue decrease for Mid-Atlantic managed species (red points in top plot)

Key: Black = Revenue of all species combined;

Red = Revenue of MAFMC managed species

7 / 16

State of the Ecosystem → MAFMC Risk assessent example: Commercial revenue

This element is applied at the ecosystem level. Revenue serves as a proxy for commercial profits.

Risk Level Definition
Low No trend and low variability in revenue
Low-Moderate Increasing or high variability in revenue
Moderate-High Significant long term revenue decrease
High Significant recent decrease in revenue

Ranked moderate-high risk due to the significant long term revenue decrease for Mid-Atlantic managed species (red points in top plot)

Key: Black = Revenue of all species combined;

Red = Revenue of MAFMC managed species

Risk element: CommRev, unchanged

SOE Implications: Recent change driven by benthos. Monitor changes in climate and landings drivers:

  • Climate risk element: Surfclams and ocean quahogs are sensitive to ocean warming and acidification.
  • pH in surfclam summer habitat is approaching, but not yet at, pH affecting surfclam growth
7 / 16

EAFM Risk Assessment: 2022 Update

Species level risk elements

Species Assess Fstatus Bstatus FW1Pred FW1Prey FW2Prey Climate DistShift EstHabitat
Ocean Quahog lowest lowest lowest lowest lowest lowest highest modhigh lowest
Surfclam lowest lowest lowest lowest lowest lowest modhigh modhigh lowest
Summer flounder lowest lowest lowmod lowest lowest lowest lowmod modhigh highest
Scup lowest lowest lowest lowest lowest lowest lowmod modhigh highest
Black sea bass lowest lowest lowest lowest lowest lowest modhigh modhigh highest
Atl. mackerel lowest highest highest lowest lowest lowest lowmod modhigh lowest
Chub mackerel highest lowmod lowmod lowest lowest lowest na na lowest
Butterfish lowest lowest lowmod lowest lowest lowest lowest highest lowest
Longfin squid lowmod lowmod lowmod lowest lowest lowmod lowest modhigh lowest
Shortfin squid lowmod lowmod lowmod lowest lowest lowmod lowest highest lowest
Golden tilefish lowest lowest lowmod lowest lowest lowest modhigh lowest lowest
Blueline tilefish highest highest modhigh lowest lowest lowest modhigh lowest lowest
Bluefish lowest lowest highest lowest lowest lowest lowest modhigh highest
Spiny dogfish lowmod lowest lowmod lowest lowest lowest lowest highest lowest
Monkfish highest lowmod lowmod lowest lowest lowest lowest modhigh lowest
Unmanaged forage na na na lowest lowmod lowmod na na na
Deepsea corals na na na lowest lowest lowest na na na
  • Chub mackerel were added to the table

Ecosystem level risk elements

System EcoProd CommRev RecVal FishRes1 FishRes4 FleetDiv Social ComFood RecFood
Mid-Atlantic lowmod modhigh lowmod lowest modhigh lowest lowmod highest modhigh
  • Recreational value risk decreased from high to low-moderate

Species and Sector level risk elements

Species MgtControl TecInteract OceanUse RegComplex Discards Allocation
Ocean Quahog-C lowest lowest lowmod lowest modhigh lowest
Surfclam-C lowest lowest lowmod lowest modhigh lowest
Summer flounder-R modhigh lowest lowmod modhigh highest highest
Summer flounder-C lowmod modhigh lowmod modhigh modhigh lowest
Scup-R lowmod lowest lowmod modhigh modhigh highest
Scup-C lowest lowmod modhigh modhigh modhigh lowest
Black sea bass-R highest lowest modhigh modhigh highest highest
Black sea bass-C highest lowmod highest modhigh highest lowest
Atl. mackerel-R lowmod lowest lowest lowmod lowest lowest
Atl. mackerel-C lowest lowmod modhigh highest lowmod highest
Butterfish-C lowest lowmod modhigh modhigh modhigh lowest
Longfin squid-C lowest modhigh highest modhigh highest lowest
Shortfin squid-C lowmod lowmod lowmod modhigh lowest highest
Golden tilefish-R na lowest lowest lowest lowest lowest
Golden tilefish-C lowest lowest lowest lowest lowest lowest
Blueline tilefish-R lowmod lowest lowest lowmod lowest lowest
Blueline tilefish-C lowmod lowest lowest lowmod lowest lowest
Bluefish-R lowmod lowest lowest lowmod modhigh highest
Bluefish-C lowest lowest lowmod lowmod lowmod lowest
Spiny dogfish-R lowest lowest lowest lowest lowest lowest
Spiny dogfish-C lowest modhigh modhigh modhigh lowmod lowest
Chub mackerel-C lowest lowmod lowmod lowmod lowest lowest
Unmanaged forage lowest lowest modhigh lowest lowest lowest
Deepsea corals na na modhigh na na na
  • 4 Allocation risks decreased from high to low
  • 4 Regulatory complexity risks decreased, 2 increased
  • Management control risk increased for blueline tilefish fisheries to low-moderate
8 / 16

Changes: Recreational value decreased from high to low-mod Allocation risk decreased for 4 fisheries from high to low (intermediate rankings not applied) Black sea bass regulatory complexity risk decreased from highest to moderate-high

Potential new indicators from new SOE sections on climate risk, habitat vulnerability, offshore wind

Ecosystem Overfishing Indicators

Operational thresholds for management?

Background:

Figure key:

Orange background = Tipping point overfishing threshold, Link and Watson 2019

Green background = Optimal range, Link and Watson 2019

9 / 16

Declining commercial and recreational landings can be driven by many interacting factors, including combinations of ecosystem and stock production, management actions, market conditions, and environmental change. While we cannot evaluate all possible drivers at present, here we evaluate the extent to which ecosystem overfishing (total landings exceeding ecosystem productive capacity), stock status, and system biomass trends may play a role.

How we implemented (tech-doc)

Methods

We use the definition of ecosystem overfishing from (Link, et al., 2019):

  1. The sum of catches is flat or declining
  2. Total catch per unit effort is declining
  3. Total landings relative to ecosystem production exceeds suitable limits

All of the indices are based on the principle of energy transfer up the foodweb from primary producers.

Fogarty & Ryther Indices

The Fogarty index is defined as ratio of total catches to total primary productivity in an ecosystem (Link, et al., 2019). The units are parts per thousand.

The Ryther index is defined as total catch per unit area in the ecosystem (Link, et al., 2019). The units are mt km^-2 year^-1

A modification of the indices is used. Total landings are used in lieu of total catch. This will have the effect of reducing the value of the index (compared to using total catch).

10 / 16

Known issues and questions

(2021 SOE Request Memo)

  1. The proposed ecosystem overfishing thresholds are calculated based on total catch while our preliminary indicators are based on commercial landings. Therefore, our current indicators are underestimated compared with the proposed thresholds. It is possible to add commercial discards and recreational landings and dead discards in the future, or to calculate how much additional catch is required to exceed a threshold.

  2. The proposed ecosystem overfishing thresholds are based on a global analysis. The indices define ecosystem productivity in different ways. The Ryther Index is effectively based on fishery removals relative to global primary productivity per unit area, while the Fogarty Index is based on fishery removals relative to regional primary productivity (Link, et al., 2019). The study authors "recommend that the indices proposed here be used cognizant of other potential sources of productivity and that are relevant to the scale at which fisheries management mostly occurs."

A full set of plots to help interpret the primary production required and ecosystem overfishing indices (including mean trophic level, which species are included in the landings, and the primary production time series) are available online. We welcome suggestions to include additional plots or conduct analyses to improve interpretation of these indices for the Councils.

11 / 16

Progress on estimating NEUS total catch for input into ecosystem overfishing indicators (soenotes)

Comparing all catch/landings data sources

Note: Link data, SAU data, and NAFO data are estimates of Catch whereas comlandr data is landings only (no discards)

All data sources from Andy's soenotes landingsComparison vignette

Resulting ecosystem overfishing indices

The estimated percentage of unreported catch from the SAU dataset is applied to comland data estimate to represent total comland catch.

Ecosystem overfishing indices from Andy's soenotes landingsComparison vignette

12 / 16

The NEFMC is developing an example fishery ecosystem plan that will

Discussion

Using Link and Watson 2019 as a starting point, not an end point

How would we recommend the Council use ecosystem overfishing indicators?

Data issues being worked through

  • Previous indicators based on landings, need total catch
  • Resolving different total catch estimates from different sources

What analyses can we do to tailor to our regional ecosystem and managers?

  • Simulation test suggested thresholds with regional ecosystem model
  • Establish thresholds for our region/managed species
    • Process: define unacceptable ecosystem state, dont go there
    • Easier than defining optimal state, too many
13 / 16

Extra slides

14 / 16

How is MAFMC using the risk assessment?

  • Based on risk assessment, the Council selected summer flounder as high-risk fishery for conceptual modeling

Mid-Atlantic EAFM framework

  • Council proceeding with management strategy evaluation (MSE) addressing recreational fishery discards using information from conceptual modeling.
15 / 16

In this interactive circular graph visualization, model elements identified as important by the Council (through risk assessment) and by the working group (through a range of experience and expertise) are at the perimeter of the circle. Elements are defined in detail in the last section of this page. Relationships between elements are represented as links across the center of the circle to other elements on the perimeter. Links from a model element that affect another element start wide at the base and are color coded to match the category of the element they affect.Hover over a perimeter section (an element) to see all relationships for that element, including links from other elements. Hover over a link to see what it connects. Links by default show text for the two elements and the direction of the relationship (1 for relationship, 0 for no relationship--most links are one direction).For example, hovering over the element "Total Landings" in the full model shows that the working group identified the elements affected by landings as Seafood Production, Recreational Value, and Commercial Profits (three links leading out from landings), and the elements affecting landings as Fluke SSB, Fluke Distributional Shift, Risk Buffering, Management Control, Total Discards, and Shoreside Support (6 links leading into Total Landings).

aa with management with management strategy evaluation (MSE)strategy evaluation (MSE)

  • Working group of habitat, biology, stock assessment, management, economic and social scientists developed:

    • draft conceptual models of high risk elements, linkages
    • dataset identification and gap analysis for each element and link
    • draft questions that the Council could persue with additional work
  • Final conceptual model and supporting information at December 2019 Council meeting

Additional resources

References

Bastille, K. et al. (2021). "Improving the IEA Approach Using Principles of Open Data Science". In: Coastal Management 49.1. Publisher: Taylor & Francis _ eprint: https://doi.org/10.1080/08920753.2021.1846155, pp. 72-89. ISSN: 0892-0753. DOI: 10.1080/08920753.2021.1846155. URL: https://doi.org/10.1080/08920753.2021.1846155 (visited on Apr. 16, 2021).

DePiper, G. S. et al. (2017). "Operationalizing integrated ecosystem assessments within a multidisciplinary team: lessons learned from a worked example". En. In: ICES Journal of Marine Science 74.8, pp. 2076-2086. ISSN: 1054-3139. DOI: 10.1093/icesjms/fsx038. URL: https://academic.oup.com/icesjms/article/74/8/2076/3094701 (visited on Mar. 09, 2018).

DePiper, G. et al. (2021). "Learning by doing: collaborative conceptual modelling as a path forward in ecosystem-based management". In: ICES Journal of Marine Science. ISSN: 1054-3139. DOI: 10.1093/icesjms/fsab054. URL: https://doi.org/10.1093/icesjms/fsab054 (visited on Apr. 15, 2021).

Gaichas, S. K. et al. (2018). "Implementing Ecosystem Approaches to Fishery Management: Risk Assessment in the US Mid-Atlantic". In: Frontiers in Marine Science 5. ISSN: 2296-7745. DOI: 10.3389/fmars.2018.00442. URL: https://www.frontiersin.org/articles/10.3389/fmars.2018.00442/abstract (visited on Nov. 20, 2018).

Link, J. S. et al. (2019). "Global ecosystem overfishing: Clear delineation within real limits to production". En. In: Science Advances 5.6. Publisher: American Association for the Advancement of Science Section: Research Article, p. eaav0474. ISSN: 2375-2548. DOI: 10.1126/sciadv.aav0474. URL: https://advances.sciencemag.org/content/5/6/eaav0474 (visited on Jan. 29, 2021).

Muffley, B. et al. (2021). "There Is no I in EAFM Adapting Integrated Ecosystem Assessment for Mid-Atlantic Fisheries Management". In: Coastal Management 49.1. Publisher: Taylor & Francis _ eprint: https://doi.org/10.1080/08920753.2021.1846156, pp. 90-106. ISSN: 0892-0753. DOI: 10.1080/08920753.2021.1846156. URL: https://doi.org/10.1080/08920753.2021.1846156 (visited on Apr. 16, 2021).

16 / 16

Fishery management in the US

Eight regional Fishery Management Councils establish plans for sustainable management of stocks within their jurisdictions. All are governed by the same law, but tailor management to their regional stakeholder needs.

US map highlighting regions for each fishery management council

2 / 16
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow