Ecosystem indicators linked to management objectives (DePiper, et al., 2017)
Open science emphasis (Bastille, et al., 2020)
The IEA Loop1
Objective Categories | Indicators reported here |
---|---|
Provisioning and Cultural Services | |
Seafood Production | Landings; commercial total and by feeding guild; recreational harvest |
Profits | Revenue decomposed to price and volume |
Recreation | Days fished; recreational fleet diversity |
Stability | Diversity indices (fishery and ecosystem) |
Social & Cultural | Community engagement/reliance status |
Protected Species | Bycatch; population (adult and juvenile) numbers, mortalities |
Supporting and Regulating Services | |
Biomass | Biomass or abundance by feeding guild from surveys |
Productivity | Condition and recruitment of managed species, Primary productivity |
Trophic structure | Relative biomass of feeding guilds, Zooplankton |
Habitat | Estuarine and offshore habitat conditions |
Characterizing ecosystem change for fishery management
Spatial scale
A glossary of terms, detailed technical methods documentation and indicator data are available online.
Key to figures
Trends assessed only for 30+ years: more information
Orange line = significant increase
Purple line = significant decrease
No color line = not significant or < 30 yearsGrey background = last 10 years
Key: Black = Total Landings;
Red = Landings of MAFMC managed species
Key: Black = Revenue of all species combined;
Red = Revenue of NEFMC managed species
Absence of a long-term trend in recreational effort suggests relative stability in the overall number of recreational opportunities in the MAB.
Decline in recreational fleet diversity suggests a potentially reduced range of opportunities.
Driven by party/charter contraction (from a high of 24% of angler trips to 7% currently), and a shift toward shore based angling.
Currently meeting objectives
The downward trend in harbor porpoise bycatch can also be due to a decrease in harbor porpoise abundance in US waters, reducing their overlap with fisheries, and a decrease in gillnet effort.
The increasing trend in gray seal bycatch may be related to an increase in the gray seal population.
Population drivers for North Atlantic Right Whales (NARW) include combined fishery interactions/ship strikes, distribution shifts, and copepod availability.
Unusual mortality events continue for 3 large whale species, harbor and gray seals.
Increased production by smaller phytoplankton implies less efficient transfer of primary production to higher trophic levels.
Monitor implications of increasing gelatinous zooplankton and krill.
Mid-Atlantic Bight
Current plans for rapid buildout of offshore wind in a patchwork of areas spreads the impacts differentially throughout the region
2-24% of total average revenue for major Mid-Atlantic commercial species in lease areas could be displaced if all sites are developed. Displaced fishing effort can alter fishing methods, which can in turn change habitat, species (managed and protected), and fleet interactions.
Right whales may be displaced, and altered local oceanography could affect distribution of their zooplankton prey.
Scientific data collection surveys for ocean and ecosystem conditions, fish, and protected species will be altered, potentially increasing uncertainty for management decision making.
Feedback from FMCs
Improvements for next year
MAFMC risk assessment
The IEA Loop1
This element is applied at the ecosystem level. Revenue serves as a proxy for commercial profits.
Risk Level | Definition |
---|---|
Low | No trend and low variability in revenue |
Low-Moderate | Increasing or high variability in revenue |
Moderate-High | Significant long term revenue decrease |
High | Significant recent decrease in revenue |
Key: Black = Total Landings;
Red = Landings of MAFMC managed species
Ranked moderate-high risk due to the significant long term revenue decrease for Mid-Atlantic managed species
The New England and Mid-Atlantic SOEs made possible by (at least) 52 contributors from 10 institutions
Andy Beet
Kimberly Bastille
Ruth Boettcher (Virginia Department of Game and Inland Fisheries)
Mandy Bromilow (NOAA Chesapeake Bay Office)
Zhuomin Chen (Woods Hole Oceanographic Institute)
Joseph Caracappa
Doug Christel (GARFO)
Patricia Clay
Lisa Colburn
Jennifer Cudney (NMFS Atlantic HMS Management Division)
Tobey Curtis (NMFS Atlantic HMS Management Division)
Geret DePiper
Emily Farr (NMFS Office of Habitat Conservation)
Michael Fogarty
Paula Fratantoni
Kevin Friedland
Sarah Gaichas
Ben Galuardi (GARFO)
Avijit Gangopadhyay (School for Marine Science and Technology, University of Massachusetts Dartmouth)
James Gartland (Virginia Institute of Marine Science)
Glen Gawarkiewicz (Woods Hole Oceanographic Institution)
Sean Hardison
Kimberly Hyde
John Kocik
Steve Kress (National Audubon Society’s Seabird Restoration Program)
Young-Oh Kwon (Woods Hole Oceanographic Institute)
Scott Large
Andrew Lipsky
Sean Lucey
Don Lyons (National Audubon Society’s Seabird Restoration Program)
Chris Melrose
Shannon Meseck
Ryan Morse
Kimberly Murray
Chris Orphanides
Richard Pace
Charles Perretti
CJ Pellerin (NOAA Chesapeake Bay Office)
Grace Roskar (NMFS Office of Habitat Conservation)
Grace Saba (Rutgers)
Vincent Saba
Chris Schillaci (GARFO)
Angela Silva
Emily Slesinger (Rutgers University)
Laurel Smith
Talya tenBrink (GARFO)
Bruce Vogt (NOAA Chesapeake Bay Office)
Ron Vogel (UMD Cooperative Institute for Satellite Earth System Studies and NOAA/NESDIS Center for Satellite Applications and Research)
John Walden
Harvey Walsh
Changhua Weng
Mark Wuenschel
Bastille, K. et al. (2020). "Improving the IEA Approach Using Principles of Open Data Science". In: Coastal Management 0.0. Publisher: Taylor & Francis _ eprint: https://doi.org/10.1080/08920753.2021.1846155, pp. 1-18. ISSN: 0892-0753. DOI: 10.1080/08920753.2021.1846155. URL: https://doi.org/10.1080/08920753.2021.1846155 (visited on Dec. 09, 2020).
DePiper, G. S. et al. (2017). "Operationalizing integrated ecosystem assessments within a multidisciplinary team: lessons learned from a worked example". En. In: ICES Journal of Marine Science 74.8, pp. 2076-2086. ISSN: 1054-3139. DOI: 10.1093/icesjms/fsx038. URL: https://academic.oup.com/icesjms/article/74/8/2076/3094701 (visited on Mar. 09, 2018).
Ecosystem indicators linked to management objectives (DePiper, et al., 2017)
Open science emphasis (Bastille, et al., 2020)
The IEA Loop1
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |