This document visualizes existing datasets, MOST OF WHICH ARE NOT SPECIFIC TO HERRING.
That said, herring survey strata in the fall look a lot like the combined Gulf of Maine (GOM) and Georges Bank (GB).
Herring strata in the spring look like the full shelf, GOM, GB, and the Mid Atlantic Bight (MAB).
herring_spring <- c(01010, 01020, 01030, 01040, 01050, 01060, 01070, 01080, 01090,
01100, 01110, 01120, 01130, 01140, 01150, 01160, 01170, 01180,
01190, 01200, 01210, 01220, 01230, 01240, 01250, 01260, 01270,
01280, 01290, 01300, 01360, 01370, 01380, 01390, 01400, 01610,
01620, 01630, 01640, 01650, 01660, 01670, 01680, 01690, 01700,
01710, 01720, 01730, 01740, 01750, 01760)
herring_fall <- c(01050, 01060, 01070, 01080, 01090, 01100, 01110, 01120, 01130,
01140, 01150, 01160, 01170, 01180, 01190, 01200, 01210, 01220,
01230, 01240, 01250, 01260, 01270, 01280, 01290, 01300, 01360,
01370, 01380, 01390, 01400)
herring_springgrid <- FishStatsUtils::northwest_atlantic_grid %>%
filter(stratum_number %in% herring_spring)
herring_fallgrid <- FishStatsUtils::northwest_atlantic_grid %>%
filter(stratum_number %in% herring_fall)
survdat_herring_tows <- readRDS(here::here("herringpyindex/survdat_herring_tows.rds"))
surv_herr_fall <- survdat_herring_tows |>
dplyr::filter(SEASON == "FALL",
YEAR > 1981)
surv_herr_spring <- survdat_herring_tows |>
dplyr::filter(SEASON == "SPRING",
YEAR > 1981)
Fall <- ggplot(data = ecodata::coast) +
geom_sf() +
geom_point(data = FishStatsUtils::northwest_atlantic_grid, aes(x = Lon, y = Lat), colour = "coral4", size=0.05, alpha=0.1) +
geom_point(data = herring_fallgrid, aes(x = Lon, y = Lat), colour = "green", size=0.05, alpha=0.1) +
geom_point(data = surv_herr_fall, aes(x = LON, y = LAT), colour = "blue", size=0.5, alpha=.3) +
coord_sf(xlim =c(-78.5, -65.5), ylim = c(33, 45)) +
xlab("") +
ylab("") +
ggtitle("Fall herring NEFSC BTS 1982-2022")+
theme(plot.margin = margin(0, 0, 0, 0, "cm"))
Spring <- ggplot(data = ecodata::coast) +
geom_sf() +
geom_point(data = FishStatsUtils::northwest_atlantic_grid, aes(x = Lon, y = Lat), colour = "coral4", size=0.05, alpha=0.1) +
geom_point(data = herring_springgrid, aes(x = Lon, y = Lat), colour = "green", size=0.05, alpha=0.1) +
geom_point(data = surv_herr_spring, aes(x = LON, y = LAT), colour = "blue", size=0.5, alpha=.3) +
coord_sf(xlim =c(-78.5, -65.5), ylim = c(33, 45)) +
xlab("") +
ylab("") +
ggtitle("Spring herring NEFSC BTS 1982-2022")+
theme(plot.margin = margin(0, 0, 0, 0, "cm"))
Spring + Fall
The goal is to identify which are most promising for further refinement.
Refinement can include evaluating different spatial footprints or seasons or both.