+ - 0:00:00
Notes for next slide

State of the Ecosystem reports

Improving ecosystem information and synthesis for fishery managers

1 / 4

Regime shifts in State of the Ecosystem reports: Ecosystem synthesis themes

Characterizing ecosystem change for fishery management

  • Societal, biological, physical and chemical factors comprise the multiple system drivers that influence marine ecosystems through a variety of different pathways.
  • Changes in the multiple drivers can lead to regime shifts — large, abrupt and persistent changes in the structure and function of an ecosystem.
  • Regime shifts and changes in how the multiple system drivers interact can result in ecosystem reorganization as species and humans respond and adapt to the new environment.

2 / 4

Key points

1. We have not developed standard methods to identify ecosystem level regime shifts

2. Managers request that we clearly define "large" "abrupt" and "persistent" (and while we are at it, change in structure/function)

Hoping this workshop does both.

3 / 4

References

Bastille, K. et al. (2021). "Improving the IEA Approach Using Principles of Open Data Science". In: Coastal Management 49.1. Publisher: Taylor & Francis _ eprint: https://doi.org/10.1080/08920753.2021.1846155, pp. 72-89. ISSN: 0892-0753. DOI: 10.1080/08920753.2021.1846155. URL: https://doi.org/10.1080/08920753.2021.1846155 (visited on Apr. 16, 2021).

DePiper, G. S. et al. (2017). "Operationalizing integrated ecosystem assessments within a multidisciplinary team: lessons learned from a worked example". En. In: ICES Journal of Marine Science 74.8, pp. 2076-2086. ISSN: 1054-3139. DOI: 10.1093/icesjms/fsx038. URL: https://academic.oup.com/icesjms/article/74/8/2076/3094701 (visited on Mar. 09, 2018).

DePiper, G. et al. (2021). "Learning by doing: collaborative conceptual modelling as a path forward in ecosystem-based management". In: ICES Journal of Marine Science 78.4, pp. 1217-1228. ISSN: 1054-3139. DOI: 10.1093/icesjms/fsab054. URL: https://doi.org/10.1093/icesjms/fsab054 (visited on Aug. 08, 2022).

Gaichas, S. K. et al. (2018). "Implementing Ecosystem Approaches to Fishery Management: Risk Assessment in the US Mid-Atlantic". In: Frontiers in Marine Science 5. ISSN: 2296-7745. DOI: 10.3389/fmars.2018.00442. URL: https://www.frontiersin.org/articles/10.3389/fmars.2018.00442/abstract (visited on Nov. 20, 2018).

Muffley, B. et al. (2021). "There Is no I in EAFM Adapting Integrated Ecosystem Assessment for Mid-Atlantic Fisheries Management". In: Coastal Management 49.1. Publisher: Taylor & Francis _ eprint: https://doi.org/10.1080/08920753.2021.1846156, pp. 90-106. ISSN: 0892-0753. DOI: 10.1080/08920753.2021.1846156. URL: https://doi.org/10.1080/08920753.2021.1846156 (visited on Apr. 16, 2021).

Perretti, C. et al. (2017). "Regime shifts in fish recruitment on the Northeast US Continental Shelf". En. In: Marine Ecology Progress Series 574, pp. 1-11. ISSN: 0171-8630, 1616-1599. DOI: 10.3354/meps12183. URL: http://www.int-res.com/abstracts/meps/v574/p1-11/ (visited on Feb. 10, 2022).

Additional resources

4 / 4

Regime shifts in State of the Ecosystem reports: Ecosystem synthesis themes

Characterizing ecosystem change for fishery management

  • Societal, biological, physical and chemical factors comprise the multiple system drivers that influence marine ecosystems through a variety of different pathways.
  • Changes in the multiple drivers can lead to regime shifts — large, abrupt and persistent changes in the structure and function of an ecosystem.
  • Regime shifts and changes in how the multiple system drivers interact can result in ecosystem reorganization as species and humans respond and adapt to the new environment.

2 / 4
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow