Overview
What types of decisions are made?
How can ecosystem information support these decisions?
Word cloud based on Mid-Atlantic Fishery Management Council EAFM Guidance Document
Develop reporting for and with a specific audience:
Show up to management meetings. Regularly.
Center on management objectives.
Focus on management implications.
Listen, and respond to requests.
Iterate.
Develop reporting for and with a specific audience:
Show up to management meetings. Regularly.
Center on management objectives.
Focus on management implications.
Listen, and respond to requests.
Iterate.
"How can we use this?"
Collaborate across disciplines, with managers and stakeholders.
Prepare some examples.
Expect them to be changed!
Listen, and respond to requests.
Iterate.
Eight regional Fishery Management Councils establish plans for sustainable management of stocks within their jurisdictions. All are governed by the same law, but tailor management to their regional stakeholder needs.
More information: http://www.fisherycouncils.org/
https://www.fisheries.noaa.gov/topic/laws-policies#magnuson-stevens-act
Ecosystem indicators linked to management objectives (DePiper, et al., 2017)
Open science emphasis (Bastille, et al., 2021)
Used within Mid-Atlantic Fishery Management Council's Ecosystem Process (Muffley, et al., 2021)
Characterizing ecosystem change for fishery management with synthesis themes
Objective Categories | Indicators reported |
---|---|
Provisioning and Cultural Services | |
Seafood Production | Landings; commercial total and by feeding guild; recreational harvest |
Profits | Revenue decomposed to price and volume |
Recreation | Angler trips; recreational fleet diversity |
Stability | Diversity indices (fishery and ecosystem) |
Social & Cultural | Community engagement/reliance and environmental justice status |
Protected Species | Bycatch; population (adult and juvenile) numbers, mortalities |
Supporting and Regulating Services | |
Biomass | Biomass or abundance by feeding guild from surveys |
Productivity | Condition and recruitment of managed species, primary productivity |
Trophic structure | Relative biomass of feeding guilds, zooplankton |
Habitat | Estuarine and offshore habitat conditions |
Performance relative to management objectives
Seafood production
Profits
Recreational opportunities: Effort
; Effort diversity
Stability: Fishery
; Ecological
Social and cultural, trend not evaluated, status of:
Protected species:
Risks to meeting fishery management objectives
Climate: warming and changing oceanography continue
Other ocean uses: offshore wind development
Indicators: ocean currents, temperature, seasons
The Gulf Stream is trending north. Ocean summer is lasting longer. In contrast to SST, long term bottom temperature is increasing in all seasons. Few surface and no bottom extreme warming events in 2022.
Seasonal sea surface temperatures in 2022 were above average for most of the year, however late spring storms caused deep mixing, which delayed stratification and surface warming in late spring and early summer. A combination of long-term ocean warming and extreme events should be used to assess total heat stress on marine organisms
Climate*: 6 low, 3 low-mod, 4 mod-high, 1 high risk
Multiple drivers with different impacts by species
Ocean acidification impact on commercial species
Warm core rings important to Illex availability.
*Climate vulnerability and Distribution Shift risk levels from climate vulnerability analysis (Hare, et al., 2016)
DistShift*: 2 low, 9 mod-high, 3 high risk species
New Indicator: protected species shifts
Diverse stakeholders agreed that an ecosystem approach was necessary. Developing and implementing EAFM is done in collaboration between managers, stakeholders, and scientists. https://www.mafmc.org/eafm
(Gaichas, et al., 2016) The Council’s EAFM framework has similarities to the IEA loop. It uses risk assessment as a first step to prioritize combinations of managed species, fleets, and ecosystem interactions for consideration. Second, a conceptual model is developed identifying key environmental, ecological, social, economic, and management linkages for a high-priority fishery. Third, quantitative modeling addressing Council-specified questions and based on interactions identified in the conceptual model is applied to evaluate alternative management strategies that best balance management objectives. As strategies are implemented, outcomes are monitored and the process is adjusted, and/or another priority identified in risk assessment can be addressed.
This element is applied at the ecosystem level. Revenue serves as a proxy for commercial profits.
Risk Level | Definition |
---|---|
Low | No trend and low variability in revenue |
Low-Moderate | Increasing or high variability in revenue |
Moderate-High | Significant long term revenue decrease |
High | Significant recent decrease in revenue |
Ranked moderate-high risk due to the significant long term revenue decrease for Mid-Atlantic managed species (red points in top plot)
Key: Black = Revenue of all species combined; Red = Revenue of MAFMC managed species
This element is applied at the ecosystem level. Revenue serves as a proxy for commercial profits.
Risk Level | Definition |
---|---|
Low | No trend and low variability in revenue |
Low-Moderate | Increasing or high variability in revenue |
Moderate-High | Significant long term revenue decrease |
High | Significant recent decrease in revenue |
Ranked moderate-high risk due to the significant long term revenue decrease for Mid-Atlantic managed species (red points in top plot)
Key: Black = Revenue of all species combined; Red = Revenue of MAFMC managed species
SOE Implications: Recent change driven by benthos. Monitor changes in climate and landings drivers:
Species level risk elements
Species | Assess | Fstatus | Bstatus | FW1Pred | FW1Prey | FW2Prey | Climate | DistShift | EstHabitat |
---|---|---|---|---|---|---|---|---|---|
Ocean Quahog | lowest | lowest | lowest | lowest | lowest | lowest | highest | modhigh | lowest |
Surfclam | lowest | lowest | lowest | lowest | lowest | lowest | modhigh | modhigh | lowest |
Summer flounder | lowest | lowest | lowmod | lowest | lowest | lowest | lowmod | modhigh | highest |
Scup | lowest | lowest | lowest | lowest | lowest | lowest | lowmod | modhigh | highest |
Black sea bass | lowest | lowest | lowest | lowest | lowest | lowest | modhigh | modhigh | highest |
Atl. mackerel | lowest | highest | highest | lowest | lowest | lowest | lowmod | modhigh | lowest |
Chub mackerel | highest | lowmod | lowmod | lowest | lowest | lowest | na | na | lowest |
Butterfish | lowest | lowest | lowmod | lowest | lowest | lowest | lowest | highest | lowest |
Longfin squid | lowmod | lowmod | lowmod | lowest | lowest | lowmod | lowest | modhigh | lowest |
Shortfin squid | highest | lowmod | lowmod | lowest | lowest | lowmod | lowest | highest | lowest |
Golden tilefish | lowest | lowest | lowmod | lowest | lowest | lowest | modhigh | lowest | lowest |
Blueline tilefish | highest | highest | modhigh | lowest | lowest | lowest | modhigh | lowest | lowest |
Bluefish | lowest | lowest | lowmod | lowest | lowest | lowest | lowest | modhigh | highest |
Spiny dogfish | lowest | highest | lowmod | lowest | lowest | lowest | lowest | highest | lowest |
Monkfish | highest | lowmod | lowmod | lowest | lowest | lowest | lowest | modhigh | lowest |
Unmanaged forage | na | na | na | lowest | lowmod | lowmod | na | na | na |
Deepsea corals | na | na | na | lowest | lowest | lowest | na | na | na |
Ecosystem level risk elements
System | EcoProd | CommRev | RecVal | FishRes1 | FishRes4 | FleetDiv | Social | ComFood | RecFood |
---|---|---|---|---|---|---|---|---|---|
Mid-Atlantic | lowmod | modhigh | lowest | lowest | modhigh | lowest | lowmod | highest | modhigh |
Species and Sector level risk elements
Species | MgtControl | TecInteract | OceanUse | RegComplex | Discards | Allocation |
---|---|---|---|---|---|---|
Ocean Quahog-C | lowest | lowest | lowmod | lowest | modhigh | lowest |
Surfclam-C | lowest | lowest | lowmod | lowest | modhigh | lowest |
Summer flounder-R | modhigh | lowest | lowmod | modhigh | highest | highest |
Summer flounder-C | lowmod | modhigh | lowmod | modhigh | modhigh | lowest |
Scup-R | lowmod | lowest | lowmod | modhigh | modhigh | highest |
Scup-C | lowest | lowmod | modhigh | modhigh | modhigh | lowest |
Black sea bass-R | highest | lowest | modhigh | modhigh | highest | highest |
Black sea bass-C | highest | lowmod | highest | modhigh | highest | lowest |
Atl. mackerel-R | lowmod | lowest | lowest | lowmod | lowest | lowest |
Atl. mackerel-C | lowest | lowmod | modhigh | highest | lowmod | highest |
Butterfish-C | lowest | lowmod | modhigh | modhigh | modhigh | lowest |
Longfin squid-C | lowest | modhigh | highest | modhigh | highest | lowest |
Shortfin squid-C | lowmod | lowmod | lowmod | modhigh | lowest | highest |
Golden tilefish-R | na | lowest | lowest | lowest | lowest | lowest |
Golden tilefish-C | lowest | lowest | lowest | lowest | lowest | lowest |
Blueline tilefish-R | lowmod | lowest | lowest | lowmod | lowest | lowest |
Blueline tilefish-C | lowmod | lowest | lowest | lowmod | lowest | lowest |
Bluefish-R | lowmod | lowest | lowest | lowmod | modhigh | highest |
Bluefish-C | lowest | lowest | lowmod | lowmod | lowmod | lowest |
Spiny dogfish-R | lowest | lowest | lowest | lowest | lowest | lowest |
Spiny dogfish-C | lowest | modhigh | modhigh | modhigh | lowmod | lowest |
Chub mackerel-C | lowest | lowmod | lowmod | lowmod | lowest | lowest |
Unmanaged forage | lowest | lowest | modhigh | lowest | lowest | lowest |
Deepsea corals | na | na | modhigh | na | na | na |
In this interactive circular graph visualization, model elements identified as important by the Council (through risk assessment) and by the working group (through a range of experience and expertise) are at the perimeter of the circle. Elements are defined in detail in the last section of this page. Relationships between elements are represented as links across the center of the circle to other elements on the perimeter. Links from a model element that affect another element start wide at the base and are color coded to match the category of the element they affect.Hover over a perimeter section (an element) to see all relationships for that element, including links from other elements. Hover over a link to see what it connects. Links by default show text for the two elements and the direction of the relationship (1 for relationship, 0 for no relationship--most links are one direction).For example, hovering over the element "Total Landings" in the full model shows that the working group identified the elements affected by landings as Seafood Production, Recreational Value, and Commercial Profits (three links leading out from landings), and the elements affecting landings as Fluke SSB, Fluke Distributional Shift, Risk Buffering, Management Control, Total Discards, and Shoreside Support (6 links leading into Total Landings).
Results for 2 of 16 performance metrics:
The Bluefish Research Track ESP was presented December 7 2022, and was well received by CIE reviewers. Reviewers commented that it was the most complete treatment of a stock assessment "ecosystem ToR" they had seen, and formed a good basis for integrating further ecosystem information into the stock assessment in the future. The full ESP document is available as a working paper from the stock assessment data portal.
In addition to the conceptual model, a summary table was developed for bluefish ecosystem indicators. This type of summary could contribute to OFL CV decisions with further information on how these indicator levels affect uncertainty in assessment.
Management decisions
Methods and tools
State of the Ecosystem data on github https://github.com/NOAA-EDAB/ecodata
Bastille, K. et al. (2021). "Improving the IEA Approach Using Principles of Open Data Science". In: Coastal Management 49.1. Publisher: Taylor & Francis _ eprint: https://doi.org/10.1080/08920753.2021.1846155, pp. 72-89. ISSN: 0892-0753. DOI: 10.1080/08920753.2021.1846155. URL: https://doi.org/10.1080/08920753.2021.1846155 (visited on Apr. 16, 2021).
DePiper, G. S. et al. (2017). "Operationalizing integrated ecosystem assessments within a multidisciplinary team: lessons learned from a worked example". En. In: ICES Journal of Marine Science 74.8, pp. 2076-2086. ISSN: 1054-3139. DOI: 10.1093/icesjms/fsx038. URL: https://academic.oup.com/icesjms/article/74/8/2076/3094701 (visited on Mar. 09, 2018).
DePiper, G. et al. (2021). "Learning by doing: collaborative conceptual modelling as a path forward in ecosystem-based management". In: ICES Journal of Marine Science. ISSN: 1054-3139. DOI: 10.1093/icesjms/fsab054. URL: https://doi.org/10.1093/icesjms/fsab054 (visited on Apr. 15, 2021).
Gaichas, S. K. et al. (2018). "Implementing Ecosystem Approaches to Fishery Management: Risk Assessment in the US Mid-Atlantic". In: Frontiers in Marine Science 5. ISSN: 2296-7745. DOI: 10.3389/fmars.2018.00442. URL: https://www.frontiersin.org/articles/10.3389/fmars.2018.00442/abstract (visited on Nov. 20, 2018).
Gaichas, S. K. et al. (2016). "A Framework for Incorporating Species, Fleet, Habitat, and Climate Interactions into Fishery Management". In: Frontiers in Marine Science 3. ISSN: 2296-7745. DOI: 10.3389/fmars.2016.00105. URL: https://www.frontiersin.org/articles/10.3389/fmars.2016.00105/full (visited on Apr. 29, 2020).
Hare, J. A. et al. (2016). "A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf". In: PLOS ONE 11.2, p. e0146756. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0146756. URL: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146756 (visited on Mar. 01, 2016).
Muffley, B. et al. (2021). "There Is no I in EAFM Adapting Integrated Ecosystem Assessment for Mid-Atlantic Fisheries Management". In: Coastal Management 49.1. Publisher: Taylor & Francis _ eprint: https://doi.org/10.1080/08920753.2021.1846156, pp. 90-106. ISSN: 0892-0753. DOI: 10.1080/08920753.2021.1846156. URL: https://doi.org/10.1080/08920753.2021.1846156 (visited on Apr. 16, 2021).
Overview
What types of decisions are made?
How can ecosystem information support these decisions?
Word cloud based on Mid-Atlantic Fishery Management Council EAFM Guidance Document
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |